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Abstract. We propose, analyze, and test a proximal-gradient method for solving regularized
optimization problems with general constraints. The method employs a decomposition strategy to
compute trial steps and uses a merit function to determine step acceptance or rejection. Under various
assumptions, we establish a worst-case iteration complexity result, prove that limit points are first-
order KKT points, and show that manifold identification and active-set identification properties hold.
Preliminary numerical experiments on a subset of the CUTESst test problems and sparse canonical
correlation analysis problems demonstrate the promising performance of our approach.
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1. Introduction. We consider the constrained optimization problem

(1.1) 52%51 f(x) +r(x) subject to (s.t.) c(z) =0, x € Q,
where f : R” — R is continuously differentiable, r : R” — [0,00) is a nonnegative-
valued convex function (possibly nonsmooth), ¢ : R® — R™ is continuously differen-
tiable with m < n, and  is the nonnegative orthant in R™ (i.e., the vectors in R™
with all nonnegative components). We note that general inequality constraints can
be converted to the form (1.1) by using slack variables. Thus, problem (1.1) is impor-
tant to a range of application areas such as data science (e.g., principal component
analysis [55] and canonical correlation analysis [52, 53]), finance (e.g., portfolio selec-
tion [1, 14]), signal processing (e.g., sparse blind deconvolution [54] and array beam-
former design [27, 30]), and image processing (e.g., hyperspectral unmixing [12]).
When the constraints in (1.1) are not present, the problem reduces to a nonsmooth
unconstrained regularized optimization problem, for which proximal-gradient (PG)
methods and their variants are among the most widely used algorithms [3, 4, 11, 10, 32,
36]. The basic PG method proceeds by solving a sequence of proximal subproblems.
Given the kth iterate z; € R™ and proximal parameter oy > 0, the next iterate x4
is computed as the unique solution to the optimization problem

(1.2) min {51 lo = (@ = VF @) + (@)}
A notable property of PG methods is that as a — 0, the vector 11 — z con-
verges to zero. PG methods are also well-known for their structure identification
property [35, 42, 47], whereby the sequence of iterates eventually identifies the mani-
fold associated with a solution (e.g., the zero-nonzero structure of an optimal solution
when r(z) = ||z|]1). This property is particularly advantageous in structured opti-
mization problems for at least three reasons. First, identifying the correct solution
structure can have significant computational savings. For example, when r(z) = ||z||1,
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it is well known that optimal solutions tend to be sparser, and in the context of sta-
tistical modeling sparser solutions offer simpler models that can be employed more
efficiently [28, 29]. Second, in certain other applications, the zero-nonzero values of
the variables can have a physical meaning that is lost if the solutions do not have the
true zero-nonzero structure [20, 22, 49]. Third, if the manifold of the solution can
be identified, then one can consider hybrid methods that combine PG calculations
with those of more advanced (usually higher-order) optimization algorithms designed
for smooth optimization problems (here restricted to the smooth manifold identified
by the PG iterates). Such an approach aims to exploit local smoothness to achieve
accelerated convergence rates, and has great success in many settings [2, 35, 39].

When the regularization function r is not present in problem (1.1), it reduces to a
traditional nonlinear program. An important concept in the nonlinear programming
literature is active-set identification. An algorithm has the active-set identification
property if, under certain reasonable assumptions, it can identify from an iterate near
an optimal solution which inequality constraints are active (i.e., hold at equality)
at that optimal solution. For a comprehensive overview of active-set identification
strategies in nonlinear programming, see [21, 43] and the references therein.

Little research has considered the case when the regularization function r and
nonlinear constraints are present. Two primary challenges arise in this setting. First,
the computation of projections onto the feasible points satisfying ¢(z) = 0 (or perhaps
the intersection of this region with ) is typically computationally intractable. Second,
conventional techniques such as penalty-based methods [17] may fail to preserve the
structure of the solution (see [16, Section 5]), therefore limiting their effectiveness in
this setting. Our work is motivated by the need to address these challenges.

1.1. Related work. We restrict our attention to work that considers regularized
optimization problems with smooth nonlinear constraints, where both the smooth part
of the objective and the constraints may be nonconvex. Most approaches are penalty-
function-based, where constrained problems are transformed into unconstrained ones
(or ones with simple constraints) by combining the objective function with a penalty
function that measures constraint violation. The resulting subproblems are then typ-
ically solved using the PG method or its variants. Penalty-based methods generally
fall into two main categories: augmented Lagrangian methods and penalty-barrier
methods. Among these, [8, 38, 46] propose inexact augmented Lagrangian meth-
ods and show that an eKKT point can be found within O(e~3) iterations under
suitable constraint qualifications. The constraint qualifications in [38, 46] are identi-
cal, whereas [8] uses a slightly different condition, replacing the subdifferential with
the horizon subdifferential. In contrast, the augmented Lagrangian method in [26]
adopts a transversality condition and establishes a better complexity bound of O(e~2).
In [18], an augmented Lagrangian method is proposed for solving regularized problems
with general constraints. The authors use an AM-regularity condition to establish con-
vergence, but no complexity result is provided. To the best of our knowledge, [17] is
the only penalty-barrier approach designed for our problem setting. Instead of assum-
ing any constraint qualification, they directly assume the existence and boundedness
of Lagrange multipliers, which is typically implied by a constraint qualification.

Three non-penalty approaches for solving regularized problems with constraints
include [7, 16, 51]. In [51], the authors combine ideas from PG methods and se-
quential quadratic programming methods. In particular, their method formulates a
quadratic approximation to f, linearizes the constraint function, and keeps the regu-
larizer explicitly in each subproblem. This nonsmooth subproblem is solved using a
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semi-smooth Newton method. The weakness of this approach is that each subproblem
is assumed to be feasible and no structure identification result is provided. In [7], a
feasible proximal-gradient method is proposed that reformulates a nonconvex problem
into convex surrogate subproblems with quadratic regularization, but it cannot handle
problems that involve equality constraints due to the infeasibility of each subproblem.
Our work builds upon on [16], which only considers the equality-constrained case. Al-
though limited in relevance here, we mention that some work has considered problems
with only simple bound constraints [5, 34] or only linear constraints [25, 31, 33].

1.2. Contributions. Our contributions relate to the proposal, analysis, and
testing of a new PG algorithm for solving problem (1.1), as we now discuss.

e We propose a new PG method (Algorithm 3.1) for solving problem (1.1). Un-
like most work in the literature, our method has the following characteristics:
(i) it uses the regularization function explicitly (as opposed to approximating
it) when computing the trial step, (ii) it avoids using a penalty function to
handle the constraints, and (iii) every subproblem is feasible.

e We establish various convergence results. (i) Without assuming any con-
straint qualification, we prove that the number of iterations required to re-
duce a stationarity measure related to minimizing the constraint violation
below € > 0 is O(e~?) (see Theorem 5.8). (i) Under the linear independence
constraint qualification (LICQ), we show that all limit points of the iterate
sequence are first-order KKT points (see Theorem 5.25). (iii) Under a se-
quential constraint qualification that is stronger than the LICQ, we prove
that the worst-case iteration complexity needed to reduce a KKT measure
below € > 0 is O(e2) (see Theorem 5.12). (iv) When strict complementarity
holds in addition, we prove that our method possesses an optimal active-set
identification property (see Theorem 5.26). (v) Under partial smoothness of
the regularization function r and a certain non-degeneracy assumption, we es-
tablish a manifold identification property for our method (see Theorem 5.27).

e We numerically test the performance of our method on CUTEst test prob-
lems and a sparse canonical correlation analysis problem. In addition, we
demonstrate the competitive performance of our algorithm by comparing it
to an augmented Lagrangian approach named Bazinga [18].

1.3. Organization. In Section 2, we introduce notations and definitions. In
Section 3, we propose our method as Algorithm 3.1. In Section 4, we derive pre-
liminary results for the subproblems used in our method, which are critical for the
theoretical analysis we provide in Section 5. In Section 6, we illustrate our algorithm’s
performance through numerical tests, and final comments are provided in Section 7.

2. Preliminaries. Let R denote the set of real numbers, R (resp., Ry ) de-
note the set of nonnegative (resp., positive) real numbers, R™ denote the set of n-
dimensional real vectors, and R™*™ denote the set of m-by-n-dimensional real ma-
trices. The set of natural numbers is N := {0,1,2,...}. For a given natural number
n € N, let [n] :={1,...,n}. The index sets of active and inactive variables at z € R"
is A(xz) == {i € [n] : &; = 0} and Z(x) := {i € [n] : x; # 0}, respectively. The
e-neighborhood ball of a point z € R™ is B(x,€) := {z € R" : ||l — z||2 < €}. Given
a nonempty set C that is either compact, or closed and convex, and a point T € R",
the distance from Z to C is dist(Z,C) := mingec || — Z||2-

For convenience, we define g(x) := Vf(z) and J(z) := Ve(z)". We append a
natural number as a subscript for a quantity to denote its value during an iteration
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of an algorithm; i.e., we let fi := f(ag), gr := g(xk), ek = c(xg), and Ji := J(ag).
We now introduce several key concepts from convex analysis that will be used
throughout the paper. We start with the normal cone [45, Theorem 6.9].

DEFINITION 2.1 (normal cone). The normal cone of a convex set C at x € C is
Ne(z) ={veR": v (y —2) <0 forall yeC}.

We define the tangent cone using its polarity with the normal cone [45, Theorem 6.28].

DEFINITION 2.2 (tangent cone). The tangent cone of a convex set C at x € C is
Te(z) ={d € R":v7d <0 forall v € Ne(x)}.

Next, we define the projection onto a closed convex set [6, Proposition 1.1.9].

DEFINITION 2.3 (Projection). Let C C R™ be a nonempty closed convex set. The
projection of x € R™ onto C is Projo(z) := arg minyec ||z — yl|2.

Finally, we define the projection of the steepest descent direction of a function
onto the tangent cone [9, Equation (3.1)] associated with  at a point z.

DEFINITION 2.4. Given a differentiable function h : R™ — R, a convex set C, and
x € C, the projection of the steepest descent direction of h at x onto T¢(z) is

Vch(z) = arg II(llI)l v+ Vh(2)|l2 = Projr, ) (= Vh(2)).
veETe (x

3. Algorithm Framework. The algorithm that we propose for solving prob-
lem (1.1) is stated as Algorithm 3.1. Given the kth iterate xj € §, the kth proximal
parameter ay, and constant x, € Ry, we first compute a direction v, that reduces
linearized infeasibility within 2. In particular, the vector vy is computed as an ap-
proximate solution to the bound-constrained trust-region subproblem

(3.1) Hel]gll mi(v) st ||vll2 € koowdi, T +v € Q with mg(v) == 3|k + Jxv|3,

where
(3.2) Sk == [|Vav(zk)ll2 = || Projpy o (—Ji ci)llz with ¢ (z) := §[lc(z)|3.

If 6 = 0, then v, < 0 solves (3.1). In this case, if ||ck||2 # 0, we terminate our
algorithm in Line 7 since zj is an infeasible stationary point, i.e., xj is infeasible for
¢(z) = 0 and is a first-order stationary point for the problem

L1 2
(3.3) min 3lc(z)]l2-
If 65, # 0, we compute an approximate solution v to (3.1) satisfying
(3.4) lvgll2 < Kpardr, xp+vi € Q, and my(vg) < mg(vy),

where vf is a Cauchy point computed using a projected line search along the steepest
descent direction of my at v = 0. In particular, by defining

(3.5) v (B) + Projo(zr — BVmMi(0)) — ap = Projg(ay — Bchk) — Tk,
4
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we define the Cauchy point as

(3.6) vi = vk(Br) = Projg(ax — BiJj cx) — @

where, for some chosen v € (0,1),

(3.7) Br =

with i; being the smallest nonnegative integer such that 5 in (3.7) satisfies
(3.8) vk (B2 < Kvarde and my(vk(Br)) < Mk (0) + 17 Vg (0) vg (Br)

for some constant 7, € (0,1). (It follows from Lemma 4.2 later on that this procedure
is well defined.) Note from the definition of v§ (see (3.6) which ensures zj, + v € Q)
and (3.8) that v itself satisfies the conditions required of vy in (3.4).

Algorithm 3.1 PG method for solving problem (1.1)
1: IHPUt: RS Q, {a077—717 Rr, /fv} C R>07 and {5777@70'076777777771} - (07 1)
2: for k=0,1,2,... do
3: compute d, in (3.2)

4: if 9 = 0 then

5: set v <0

6: if ||ck||2 # 0 then

7: return zj, (infeasible stationary point)

8: end if

9: else (& #0)

10: compute v; as an approximate solution to (3.1) satisfying (3.4)
11: end if

12: compute ug as the unique solution to subproblem (3.9)

13: set sp < v + ug

14: if ||sg|l2/car = 0 then

15: return z (first-order KKT point for problem (1.1))

16: end if

17: compute 73 using (3.10)

18 D, (opsn)~r, (o) <~ (5 llsk3 4+ oellenlls — llew + Jisiz)) then
19: set Tpy1 — Tk + Sk and agy1 — o

20: else

21: set xp+1 — o and apy1 — Eay

22: end if

23: end for

Next, we compute a direction u; that maintains the level of linearized infeasibility
achieved by vg while also reducing a model of the objective function. In particular,
we compute ug as the unique solution to the strongly convex subproblem

T 1 2, 1,T
min gy u+ 5—||u v u+r(zy + v+ u
o) min g+ Al + LoFu+ r(ox + v+ )
s.t. Jyu =0, zp+ v +u €.

Concerning subproblem (3.9), note that u = 0 is feasible and that its solution is unique
since it is a convex optimization problem with a strongly convex objective function.
The overall trial step sy is defined as s = v + ug.

5
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To determine whether the trial step sy is accepted, we adopt the £5 merit function,
which for merit parameter 7 € Ry is defined as

O (2) = 7(f(2) +1(x)) + [le(@)]l2.

During each iteration, the merit parameter is updated so that s is a descent direction
for the merit function. To ensure that this holds, note that the directional derivative
of @, at xy, along sy, denoted as Dg_(x, si), satisfies (see [16, Lemma 3.3])

Dg_(x, S)
< 7(g¢ sk +7(@k + sk) — ) + llew + Jesell2 — llekll2

L Iskll3 + r(ze + sk) — ) Fllew + Jesllz — llexl2.

=- ﬁ”skH%‘FT(Qgsk‘F Zan

Ay

Next, for a chosen parameter o. € (0, 1), we set

00 if A, <0,
Th,trial <= (=oe)lexllz=llertIusill) - otherwise,
9 skt ag, Iskl3+r(@stse)—rk

and then set, for some chosen €, € (0, 1), the value of the kth merit parameter as

— if 1< rials
(3.10) - {Tk 1 II Tg—1 > Tk trial

min{(1 — &;)7_1, Tk,tri;ﬂ} otherwise.
This merit parameter update strategy ensures that

Do, (w,s1) < —52=|lskll5 — oelllerlla = llex + Jrsll2),

meaning that the negative directional derivative is lower bounded by critical measures
of problem (1.1). The kth iteration is completed by checking whether the merit
function achieves sufficient decrease (see Line 18), and then defining the next iterate
and proximal parameter accordingly. Specifically, if sufficient decrease in the merit
function is achieved, the trial step is accepted (i.e., xp11 < x + si) and the proximal
parameter value is maintained (i.e., agy1 < ay); otherwise, the trial step is rejected
(i.e., Tx+1 < xx) and the proximal parameter value is decreased (i.e., ag+1 + Eag
for some & € (0,1)). This update strategy motivates the definition of the index set

(3.11) S:={keN:zpy1 =z + sk},

which contains the indices of the successful iterations associated with Algorithm 3.1.
The following assumption is assumed to hold throughout the paper.

ASSUMPTION 3.1. Let X C R™ be an open convex set containing the iterate se-
quences {xi} and {x + vy} generated by Algorithm 3.1. The function f : R™ — R
is bounded over X, and its gradient function Vf : R™ — R s Lipschitz continuous
and bounded in norm over X. Similarly, for all i € [m], the constraint function
¢ : R" = R is bounded over X, and its gradient function Vc; : R® — R is Lipschitz
continuous and bounded in norm over X. Finally, the function r : R™ — R, is
conver, and has bounded subdifferential Or : R™ — R™ over X. B

6
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Under Assumption 3.1, there exist constants ( fint, fsup, KV f, Kor, Kes K, Lg, Ly) €
R xR xR g xRy xRy xRy xR,y xRy such that for all z € X one has

finf S f(x) S fsupv ||Vf(x)||2 é HVfa ||8T(l')||2 S Ror,

(3.12)
lle(@)l2 < ke, IVe(@)T |2 < Ky,

and for all (z,%) € X x X one has
(313) V() = V(@2 < Lyllz — 7]l and [|Ve(2)" = Ve(@) |2 < Lz — 7.

4. Preliminary Properties Related to the Subproblems. In this section,
we discuss properties related to the subproblems used in Algorithm 3.1.

4.1. Subproblem (3.1). In this section, we present properties related to the
computation of the Cauchy point of subproblem (3.1), following by a final result
related to the computed feasibility steps. Recall that the Cauchy point is defined
n (3.6). Our first lemma summarizes properties of vy (-) (recall (3.5)).

LEMMA 4.1. Consider vi(-) defined in (3.6). For all 0 < 83 < B1, it holds that

(4.1a) lox(B2)ll2 < llvk(B1)ll2 and
(4.1Db) lox(Br)/Brll2 < [lor(B2)/Ball2-
For all B € Ry it holds that

(4.2a) =V (0)T v (8) > ox(B)|3/5  and
(4.2b) ok = [Vay(zp)ll2 > llur(8)/B; -

Finally, the following limit holds:
B—0t

Proof. Parts (4.1a)—(4.2a) follow from [48, Lemma 2], part (4.3) follows from [40,
Proposition 2], and part (4.2b) follows by combining (4.3), (4.1b), and (3.2). d

The next result is a special case of [41, Lemma 4.3].

LEMMA 4.2. Suppose that 6, # 0. If B € Ry satisfies my(vg(8)) > mi(0) +
1 Vm(0) v(B), then 8> (1 =)/ Jkll2-

We now bound the decrease in my, by using the argument in [41, Theorem 4.4].

LEMMA 4.3. Suppose that & # 0. Then, with respect to the constant ki :=
min{1, (1 — nm),v} = v(1 — nm) € (0,1), the Cauchy point vi = vi(Bk) satisfies

—Vmy(0) v (Bk) > Ky [”Uk(ﬁﬂ:)'b] min { T ||JlkTJk||2 “vk(ﬁﬂ:)|1 7I€q;06k5k} .

Moreover, with respect to the constant k1 := K1Mm = Ym (1 —nm) € (0,1), it satisfies

This manuscript is for review purposes only.
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Proof. We begin by proving the first inequality by considering three cases.
Case 1: (8, = 1. It follows from (4.2a) and S = 1 that

wmwmwmmpwgm]“%?M}

Combining this result with 1/(1+||J Ji|l2) < 1 shows that the first inequality holds.
Case 2: B, < 1 and |Jvp(y"!Bk)|l2 < kpardr. Since v € (0,1), [loe(y18k)]2 <
Kor0k, and the step size v~ 3, was not accepted by the search procedure, the suffi-
cient decrease condition must not have held, i.e., it must hold that my(vi(y~'8k)) >
mi(0) + 7m Vme(0)Tvp(y~18x). Combining this inequality with Lemma 4.2 gives
Y18k > (1 — ) /|| JE Ji||2- Combining this with (4.2a) gives

mmmwﬂ2> (1 = 1) {vmmMﬂQ

—Vmg(0) v (Br) > B {

B _71+||J,F5’1Jk||2 B
1
>5(1 = nm) Hvk(ﬁik)'b min { TN AAT [Hvk(gf)nz} ,Huakék}

so that the first inequality again holds, and completes the proof for this case.
Case 3: By < 1 and |jvg(v"1B%)|l2 > Koawdk. It follows from (4.1b) and the fact

that v € (0,1) that l[vw (Bik)l‘z > [ (J:llé"')l‘z. After rearrangement and using the fact

that ||vg (771 8k)|l2 > Kuauwdk in this case, we obtain v~ ||vk(Bk) |2 > |lvk (v~ 18k) |2 >
Ky Qg0k, which combined with (4.2a) yields
v (Br) 2

—mem%%wwz|%wwm[wwgwm}>7Mamk{ﬁk]

||Uk(ﬁk)|2} . { 1 {Uk(ﬁk)||2] }
>y |:ﬂk min 77 W#AE G s Ky 00 ¢

so that the first inequality again holds, and completes the proof for this case.
The second inequality follows from the first inequality and (3.8). ]

Combining the previous result with Lemma 4.1 gives new lower bounds.

LEMMA 4.4. For k1 € (0,1] in Lemma 4.3, the Cauchy point v§, = vg(Br) yields

(4.4a) my(0) — mi(vf) > Ky {”1)’“(5’“)”2] ’ min {1, Hvak}

By A
1
4.4b > k1llve(1 2min{,livak}
and
(4.5) Mblm+h%M2?MMH%m{ﬂ~mm%-
: T+ 1Tl

Proof. Inequality (4.4a) follows from Lemma 4.3, vf = vx(Bk), and (4.2b) with
B = Bk. Inequality (4.4b) follows from (4.1b) since S < 1.

8
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It follows from (4.4a) that ||ci + Jivf||2 < |lckll2. If ||ek|l2 = 0, then (4.5) follows
trivially. Otherwise, it follows from |lcx + Jivgll2 < |lcx||2 that

llexl3 = llex + Jevill3 = lexllz + llex + Jevgll2)(llerllz = llex + Jevgll)

4.6 .
(46) < 2cullalleclls - llex + Jivgla).

Combining (4.6) and (4.4) we have
2llexllz(llexll2 = llex + Jevill2) > llexl3 — llex + Juvills = 2(mw(0) — mu(vf))

1
> 2k1||ve (1 zmin{,nvak}.

Diving both sides by 2||ck||2 and using (3.12) gives (4.5). 0

Our next lemma relates the computation of vy to the measure §;. We suspect the
first result is well-known in the literature but we could not find a suitable reference.

LEMMA 4.5. The following results hold.
(Z) If HU}C(].)”Q = 0, then 61@ =0.
(i) ||vgll2 = 0 if and only if 6 = 0.
(iii) If 6, = 0, then xy, is a first-order KK T point for problem (3.3).

Proof. To prove part (i), we suppose that ||vg(1)]]2 = 0. Note that 0 = ||Jvg(1)]2 =
|Projo(zx — Jlcr) — xx|l2 implies that Projo(zy — Jicx) = x. Using this fact, we
can apply the projection theorem [6, Proposition 1.1.9] to obtain

(—JFe)T(z—ap) = (xp — Tl ep —a1) T (2 — ) <0 forall z € Q,
which is equivalent to —JkT ¢k € No(zk). It now follows from Definition 2.2 that
(4.7) (=T i) v <0 for all v € To(xy).
Using (4.7) and nonnegativity of norms, we find that
Yo+ T eell3 = & (ol + 207 I e+ 1T ewl) = 317 cully for all v € Toa).
It follows from this inequality and 3 |lv + JF ¢k[|3 being strongly convex in v that

0 = argmin % |lo+J] cl|3 = argmin [[o+J] ¢x |2 = Proan(mk)(—chk) = Va((zr)).
veTq(xk) veTq(xk)

It now follows from (3.2) that d; = 0, which completes the proof of part (i).

To prove part (ii), we first observe from Algorithm 3.1 that if §; = 0 then v = 0.
Thus, it remains to prove that if vy = 0, then §; = 0. To do this, let us assume that
v = 0. It follows from the third condition in (3.4) and Lemma 4.4 that

1
0 = m4(0) > my,(0) — m(v5) > Dmind ———— kyan b
0 (0) = o) 2 m(0) = () > s () min { o

Since k1, Ky, and ay, are strictly positive, it follows that ||v,(1)||2 = 0. We can combine
this result with part (i) to conclude that o = 0, which completes the proof.
The proof of part (iii) is provided in [9, Lemma 3.1(c)]. 0
9
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330
331
332

334
335
336
337

338

4.2. Subproblem (3.9). With respect to subproblem (3.9), we recall that u = 0
is feasible, the constraints are linear (meaning that the feasible region is convex and
that a constraint qualification holds), and the objective function is strongly convex.
Therefore, the unique solution uy, to subproblem (3.9) satisfies, for some g, 1, € Or(zr+
vE + uk), yr € R™, and 2 € R, the following conditions:

(4.8a) gk + Uk + G=Vk + gk + Tl ye + 26 =0,
(4.8b) Jrug =0, and
(4.8¢) || min{xg + vg + ug, —2x }H|2 = 0,

where the minimum of two vectors is taken componentwise. These conditions charac-
terize uy and will play a critical role in the analysis of Section 5. In particular, they
allow us to establish the following bound on the size of the trial step.

LEMMA 4.6. The trial step sy satisfies ||skll2 > || min{xg, —2z }|2-
Proof. Tt follows from sy = vy + uy and (4.8) that

(4.9) L, =gk +grk + JLyr + 2 and || min{xy + sp, —21. 2 = 0.

Tk
The latter equality and min-inequalities give, for each ¢ € {1,2,...,n}, that

0 = min{[z + sg)i, —[2x):} = min{[xg]:, —[2x):} + min{[sk];, 0}.
Combining this inequality with min{[zy];, —[2x]:} > 0 gives 0 < min{[xy];, —[zx]i} <
—min{[sg];,0}. It follows from this inequality that

n

I min{zy, —z}[3 = |min{[zali, —[2]i}

=1
< > min{[sili, 0} < > |salil® = lswl3.
i=1 i=1

Taking the square-root of both sides of this inequality completes the proof. 0

5. Analysis. In this section, we present a complete convergence analysis for
Algorithm 3.1 in both the finite termination case and infinite iteration case.

5.1. Finite termination. Our first result shows that the solutions to our sub-
problems that define the trial step are both zero precisely when the trial step is zero.
LEMMA 5.1. s =0 if and only if vy = up, = 0.

Proof. Since s = vp + uy, it follows that if vy = ux = 0, then s = 0. Thus,
it remains to prove that if s = 0, then vy = uy = 0. For a proof by contradiction,
suppose that sy = 0 and vy # 0. It follows from Lemma 4.5(i)(ii) that vx(1) # 0, so
that Lemma 4.4 gives vf, # 0. We may now combine this result with (4.2a) to obtain

cr Jevk = (Ji en) Top = Vi (0)Tvf < = [lvg]13/ Bk <0,

which implies that Jyvg # 0, i.e., that v{ is not in the nullspace of Ji. At the
same time, we know from (4.8b) that ug is in the nullspace of Ji. The previous two

statements cannot both be true since s = vy + ux = 0 implies that vy = —uy, which

is a contradiction. Therefore, we must conclude that vy = 0. Combining this result

with s = vr + ux = 0 shows that up = 0, and completes the proof. 0
10
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340
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356

358
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379

We can now state our finite termination results for Algorithm 3.1.

THEOREM 5.2. The following finite termination results hold for Algorithm 3.1.
(i) If Algorithm 3.1 terminates at Line 7, then xy is an infeasible stationary
point, i.e., xy s a first-order KK T point for problem (3.3) and ||ck||2 # 0.

(it) If Algorithm 3.1 terminates at Line 15, then xy is a first-order KKT point
for problem (1.1).

Proof. We first prove part (i). If Algorithm 3.1 terminates at Line 7, then it
follows from Lines 4 and 6 that §; = 0 and ||ck||2 # 0. It now follows from d = 0 and
Lemma 4.5(iii) that xy, is a first-order KKT point for problem (3.3), as claimed.

For part (ii), we know that if Algorithm 3.1 terminates in Line 15 then s = 0,
which from Lemma 5.1 implies that u; = vy = 0, and then Lemma 4.5(ii) implies
that d; = 0. Since termination did not occur in Line 7 of Algorithm 3.1, we know
that ||ck|l2 = 0. It follows from v, = ug, = 0 and (4.8) that there exists g, € Or(xg),
yr € R™, and 25, € R™ satisfying gx + grx + J{ yx +2x = 0 and || min{zg, —2x }||2 = 0.
These equations and ||k ||2 = 0 show that xy, is a first-order KKT point for (1.1). 0O

5.2. Infinite iterations. We now consider the scenario where finite termination
does not occur, meaning that Algorithm 3.1 performs an infinite number of iterations.

5.2.1. Analysis under no constraint qualification. In this section, we an-
alyze properties of the iterate sequence {z}} generated by Algorithm 3.1 when no
constraint qualification is assumed to hold. The key metric we consider is

(5.1) X = max {{lgk + grk + I yn + zell2, [loe(D)l2, [ max{ar, —2}l2}

where g, € R", y,, € R™, and 2z, € R" are defined as those quantities satisfying (4.8).
The first quantity in the max is a measure of stationarity for problem (1.1), the second
quantity is a stationarity measure for problem (3.3), and the third quantity measures
feasibility with respect to xy € €, the sign of the Lagrange multiplier estimate 2y, and
complementarity. In particular, we emphasize that ||vi(1)||2 is used here in place of
|lek |2 since a constraint qualification is not assumed to hold in this section, meaning
that it is possible that the iterates do not converge toward feasibility.

Our first result gives a uniform upper bound on the sequence {d } defined in (3.2).

LEMMA 5.3. For all iterations k € N, we have that
(5.2) 6k = ||VQ1/)(I‘k)||2 S 2/€J||Ck||2 S QHJHC.
Proof. Recall that Vo (z) = argmin{||v + Jckll2 : v € Ta(zg)}. It follows
from this fact, the triangle inequality, and 0 € Tq(z) that
IVaw(ar)lla = 17E erllz < (IVaw(r) + T crllz < (195 cxllo-

It follows from this inequality, how dj is defined in (3.2), and Assumption 3.1 that
8k = [|[Var(zk)|l2 < 2| I8 eklla < 26| |ckll2 < 2k, which completes the proof. O
We can now prove an upper bound on A, that is defined for 7 trial-

LEMMA 5.4. For all k € N, we have that

1

se-llskll3 + 7 (@r + s1) — 1 < 2(kvs + Kor)Rorsak|cklls + 265K Kea x| 2.

ggsk +
Proof. By convexity of r, we know that

(5.3) (@ 4+ ve) — e < (g8g) op for all g2y € Or(zp + vi).
11
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381

386

387

388

389
390
391
392
393
394
395
396
397
398
399
400
401

409

It now follows that

g |53 + rzk + sk) — 7k

T
9k Sk + 2a

C o+ g ol + rlen +vg) — 7
< 9k Uk + 55 VR l2 k+ Uk k
(“) T 1 2 v T

< G vk + oo vellz + (97%)" vk

D)
< (lgellz + g7 xll2)loklle + za=llvell3

(

INE
<

(lgrllz + llgy ll2)moondy + 5o KpaidR

—

)
= (lgellz + g8 xll2)rocndi + 5r5cud;

(vi
< (llgrllz + llgy rll2)2600m ks llckll2 + 265 akkT rellcrll2
(viz)
< (kvf + Kor)2Kykgog||ckll2 + 262 K% ke ck |2,
where (i) follows from substituting s = v + uy and using the fact that u; = 0 is a
feasible solution to the tangential subproblem (3.9), (ii) follows from (5.3), (iii) follows
from the Cauchy-Schwartz inequality, (iv) follows from |jvk|l2 < kydg in (3.4), (V)
follows from canceling an «aj, from the second term, (vi) follows from Lemma 5.3
and (3.12), and (vii) follows from (3.12). This completes the proof. d

The first part of the next lemma establishes that the merit parameter never needs
to be decreased for any iteration k¥ € N such that vg(1) = 0. On the other hand, for
all k € N satisfying v (1) # 0, the second part of the lemma provides a lower bound
on how small the previous merit parameter 7,_; could have been when decreased.

LEMMA 5.5. The following merit parameter update results hold.

(i) For each k € N\ {0}, if vi(1) = 0, then Tk yriar = 00 and Ty < Tr—1.

(ii) There exists a constant e, > 0 such that, for all k € N satisfying ||vg(1)|l2 # 0
and T < Tp—1, it holds that Tx_1 > €, ||vi(1)]|3.

Proof. We first prove part (i). To this end, first observe that v;(1) = 0 and
Lemma 4.5(i) imply that 0, = 0, and therefore vy = 0 holds as a consequence of
Lemma 4.5(ii). Next, since u = 0 is feasible for subproblem (3.9) we know that

gFuy + ﬁ”ukﬂg + aikvguk +r(zg + vk +uk) < r(zk + vg),

which may be combined with v = 0 to obtain g sx, + ﬁ”skﬂg +r(xg 4 sk) < r(ag).

This inequality and the definition of 7y trial gives Tk trial = 00, S0 that 73, < T4_1.
Next, we prove part (ii). It follows from the merit parameter update rule (3.10),

Jrur = 0 (see (4.8b)), the third condition in (3.4), (4.5), (3.12), Lemma 5.4, and

monotonicity of the proximal parameter sequence {ay} that if 7, < 75_1, then

(1 —=0c)(llexllz = llek + Jrvell2)

g,{sk + ﬁ”SkH% +’I"(.’£k + Sk) —TE

(1 —oe)(llexllz = ller + Trvill2)

- g;fsk + ﬁ”skﬂg +r(xg+sk) — Tk

(1= o) 2 oe (V) [ min { g7y woou |

= 2(kvys + Kor) Kok gog|ckll2 + 26265 Koo |erl2
12
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412
413

414
415

416

417

118

419

420

121
422
123
424
425

427
128
429
430
431

432

433

434

435

136

437
438

(1= o) oe (1) [ min { s  mocue |

2(kvf + Kor) Kok K2ay + QR%HQJHEQIC

> e-[loe (D)3,

— i 1
(1—0c)k1 mm{ (1+K3)u0 ,RU}

2(kvftror) Kok mz-&-ZK%mang

where €, := > 0, thus completing the proof. ]

Next, under the assumption that the merit parameter sequence stays bounded
away from zero, we give a positive lower bound on {ay}.
LEMMA 5.6. Assume that there exists Tmin > 0 such that T, > Tmin for all k € N.

If ap < WM, then k € S. Thus, for all k € N,

(5.4) Q) > Qmin := min{ay, 2(7;,#%} >0
and a bound on the number of unsuccessful iterations is given by

Tmin
200 (TminLg+L )

log(¢)

log<
(5.5) {k e N:z, ¢ S} <max | 0,

Proof. Tt follows from (3.13) and the merit parameter update rule (3.10) that

P, (ks + sk) — oy (@)
= Tk(f(xk + sg) +r(xg + Sk)) + |le(zk + sk)ll2 — Tk(fk +Tk) — llekll2-

(5.6)
< 7t sk + 7 (r(h + sk) — 1) + ek + Tkskllz — llellz + 2 (7L + Ly)llskll3
< = 2 lskll3 = oclllerlls = llex + Jrsull2) + (=52 + 1Ly + L) |skll5-

Suppose that k € N satisfies oy, < m It follows from the fact that m
is a monotonically increasing function on the nonnegative real line as a function
of 7 that ap < 2(Tmi:r£ign+LJ) < 2(TkLT:+LJ), which after rearrangement shows that
— g2+ TkLg + Ly < 0. The previous inequality, |[sk[l2 # 0 (since finite termination

does not occur), (4.5), ||cx + Jrvi|l2 < |lek + Jrvi|l2, Jeur = 0, and ne € (0, 1) give

(1= na) (= lIsell3 + oc(llerllz = llew + Jrsill2)) > 0> 5(—52 + 7Ly + L) [lsell3.

40(k QOék

Combining this inequality with (5.6) shows that k € S, as claimed. This result and
the update strategy for the proximal parameter «y ensures that the bound in (5.4)
holds. Finally, the first result we proved in this lemma and the update strategy
for {ay} shows that the maximum number of unsuccessful iterations is the smallest

nonnegative integer n, such that "+qy < W, which gives the final result.00
minLg

It will be convenient for our analysis to define the shifted merit function

(5.7) O, (2) = 7(f(2) = fint + 7(2)) + [le(2)]|2,
where finr is defined in (3.12). We stress that the (typically) unknown value fi,¢ is
never used in the algorithm statement or its implementation, only in our analysis.

LEMMA 5.7. The following properties hold for the shifted merit function.
(1) Forall{z,y} C R™ and T € Ry, it holds that . (x)—P,(y) = ®-(x) =P, (y).
(i) For all x € R"™ and 0 < 79 < 11, it holds that ®.,(z) < &, ().

13
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45

50

459

460
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(iii)

The sequence {®,, (1)} is monotonically decreasing.

Proof. See [16, Lemma 3.14] for a proof. 0

We can now state our main convergence result for this section.

THEOREM 5.8. Let Assumption 3.1 hold. One of the following two cases occurs.

()

max ¢ 0,

(i)

There exists Tmin > 0 such that T, > Tmin for all k € N. In this case, the
following hold: (a) ax > qumin := min{ap, #‘M} for all k € N; (b) If
{k1,k2} C N are two iterations with ky < ko such that k € S and xi > € for

all iterations k1 < k < ko, then it follows that

k-2 _ kl S \‘To(f(l‘o) + T(IO) - finf) + ||C(330)||2J

/%@62

(5.8)

b o — ; TminQ®min  Tmin Zckl i 1 . .
with ke = No mm{?,m, <t mm{m,ﬂvamm}}, and (c) for any

given € > 0, the maximum number of iterations before Xy < € is

log (W)
log(¢)

+1{mﬁ@wﬁw+N%D+M@wMJ

Rao€?

The merit parameter values converge to zero, t.e., limg_,oo 7 = 0. In this
case, there exists a subsequence K C N such that limgex ||vk(1)]2 = 0.

Proof. To prove part (i), let us assume there exists 7y > 0 such that 7 > Tiin
for all k € N. Using this fact, Lemma 5.6 ensures that both (5.4) and (5.5) hold.
Since (5.4) holds, part (i)(a) is proved. To prove part (i)(b), let {k1,k2} be as in
the statement of the theorem. Then, for all K € S and k; < k < ko, it follows from

Lemma

Lemma

5.7(1)—-(ii), k € S, (3.12), Jrur = 0, (4.5), and Lemma 5.6 that
i)‘l'k xk) - (i)‘l'k+1(xk+1) > (i)ﬂc (‘rk) - (I)Tk, (karl) = cI)Tk (xk) - (I)Tk (karl)

(
(&HSkH% + oc(llcklle — |lex + Jk8k||2))

2
>n¢Pﬁ”(“ﬁz)-%ﬁTHWG)@mm{LHéUH,nme

E (‘l%l‘z) + el e (1 )”%min{lﬂJlTJk||2’KUak}:| '
k

4.6, (5.9), (4.8), (5.4), and T > Tmin and ay < ap for all k£ € N give

(I)Tk (Ik) - (I)Tk+1 (‘xk-i-l)

> N {%llgk + gk + T3y + 2ell3 + g2 || min{ag, -z }3

2 o (1) 3 min { g oo

> o [T g+ g + T+ 24l + e i, 2 3

8040

Jrgfg':l (v (1) H% min {ﬁ, l%OéminH

— -2
> Ko Xk

where k¢ is defined in the statement of the current theorem. Using this inequality,

Lemma

5.7(iii), and nonnegativity of @, for all 7 € R. ), we find that

(i)To (SL‘()) > (i)‘l'kl (mkl) > (i)‘l'kl (mkl) - (i)‘l'kg (xkz)
14
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494

495
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498

ko—1 ko—1

= 3" (Br (w1) — By (241) = D Rads

k=k1 k=k1

which may be combined with . > € for all k; < k < ks to conclude that <f>7.0 (z9) >
(kg — k1)Rge?, from which (5.8) follows. The result (i)(c), namely the claimed upper
bound on the maximum iterations before x, < e, follows from what we just proved
and the fact that maximum number of unsuccessful iterations is bounded as in (5.5).

We prove part (ii) by contradiction. Thus, suppose that there exists € € Ry and
k1 € N such that ||Jvg(1)||2 > € for all & > k;. It then follows from Lemma 5.5 that
there exists Tmin € Ry such that 7, > 7, for all k € N, which is a contradiction. O

5.2.2. Analysis under a sequential constraint qualification. In this sec-
tion, we assume that a sequential constraint qualification holds (all results from Sec-
tion 5.2.1 still hold). To state this assumption, we define the index set of active
variables after taking the Cauchy step v as

Li= Alex +0f) = {i € [n] : [en + vf]s = 0},

We can now formally state the assumption we make throughout this section.

ASSUMPTION 5.1. The matriz [J}, ITz]T has full row rank and its smallest sin-

gular value is uniformly bounded away from zero for all k € N, where Iav denotes
the subset of rows of the identity matriz that correspond to the elements in A}, i.e.,
there exists omin € Ry such that amin([JkT, Igz]T) > Omin Jor all k € N with omin(A)

denoting the smallest singular value of a matriz A.

Under the above assumption, our aim is to prove a worst-case iteration complexity
result for Algorithm 3.1. Our result uses the KKT-residual measure

(5.10) X = max {{|gk + grx + Sy + zxll2, ez, | min{ar, —2}l2} -

Note that (5.10) differs from the definition of X in (5.1) by using the measure ||cg||2
instead of ||vk(1)||2, which is reasonable because of the constraint qualification.
We begin by establishing a key connection between |lvg(8k)||2 and ||ck]l2.

LEMMA 5.9. For all k € N, 4t holds that ||vi(Bk)|l2/ Bk = Tminllckll2-

Proof. Let us define the vector wy € R™ componentwise as

0 i€ n]\AY,
(5.11) [wi]i = r ‘ [ 1\ k
—[Ji; enli — [vi(Br)]i/Br i € A
We claim that the following holds:
(5.12) Projo(zx — BiJit ck) — ak = —BrJi ek — Brwr,
which we verify by considering its coordinates. If i € AY, then (3.6) and (5.11) give
[Projo(zx — BiJi ck) — xili = [vk(Br))i
= [=Bedi erli — [=Bdii ek — ve(Bi)li = [=BrJi exli — [Brwils,

so that (5.12) holds in this case. On the other hand, if i € [n] \ A}, then [Projq (zx —
BeJEer)li = [ + vk(Br)]i = [zk + v§]; > 0 and [wy]; = 0. It follows that

(5.13)

(5.14) 0 < [Projg(zx — BrJ} cx))i = max {[a:k - Bngck]i,O} ,
15
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499

501

502

503

508
509

which implies that [z — B JI cx]; > 0. Combining this with [wy]; = 0 shows that
[Projg(zx — 51«73%) — gl = (v — ﬁkjgck) —xp)i
= [—BeJL ekl = [~Be T ek — Brwg)i

so that (5.12) again holds for this case. This establishes that (5.12) holds, as claimed.
It follows from the definition of vg(8x), (5.12), and Assumption 5.1 that

(5.15)

vk (Br) _ HPTOJQ(% — BiJter) — zp _ H —BrJE e — Brwy,
ka 2 ﬂk 2 Bk 2
= |JT = | [7F ] |
19wl = | [ 5] |t |
T 7T 1T Ck
> omin([J} ’IAZ] ) ka]AJ ) > Omin||ck]|2 for all k € N,
which completes the proof. 0

We now give a bound on the improvement in linearized infeasibility at xj.
LEMMA 5.10. For all k € N, it holds that

llewllz = ller + Jusellz = llexllz = llex + Txvillz > m107]lcx [l2 min {m K”a’“} '

and

K .
llekll2 = llew + Jkskllz = llekll2 = llek + Jwvrll2 = I?lgﬁqinHCkH%mln {mvﬂvak} .
C

Proof. Tt follows from (3.4) and Lemma 4.3 that ||cx + Jpvkll2 < ||ckll2. Tt follows
from this inequality and a difference-of-squares computation that

llerlls = llex + Jrvrlls = (lekllz + llex + Trvrll2) (llekllz = llex + Trvkll2)

5.16
(5:16) < 2lleulalleclls - llex + Jivella).

Combining (5.16), the third condition in (3.4), Lemma 4.4, and Lemma 5.9 we have
2exll2(llerllz = llew + Txvillz) = llexlls = llex + Jrvell3 = 2(mp(0) — my(vr))
> 2(me(0) — me(ef) > 2y [0 i [ )
> 2k102, ||ck||3 min {m, /fvak} .

The proof of the first inequality follows by dividing through the previous inequality
by 2||c||2 and using the fact that Jyug = 0 (see (4.8b)). The second inequality follows
from the first inequality and the fact that ||cg||2/k. < 1 because of (3.12). |

We now establish that the merit parameter sequence is bounded away from zero.
LEMMA 5.11. For all k € N, it holds that

(1 — ac)magﬁn min {m, HU}
2(kvy + Kor)kokg + 262KYKe

(5.18) Tk > Tmin = min{7o, (1 — €;)Tmin,triat) } > 0.

16

>0 and

(517) Tk, trial > Tmin,trial ‘=
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529

539
540
541

Proof. We first prove (5.17). If Ay < 0in the definition of Ty tyial, then 7y tria1 = 00
so that (5.17) trivially holds. If Aj > 0, then it follows from the definition of 7% tial,
Sk = vk + ug, Jpur =0 (see (4.8b)), Lemma 5.10, Lemma 5.4, the fact that ap < g
for all k by construction of Algorithm 3.1, and (3.12) that

(1- Uc)(HCzcllz = llex + Jrvill2)
gi s+ 2ak Isell3 +7(xx + sk) — %

Tk,trial =

(1 — 0.)k102,;, ]Ik |l2 min {m, /@'Uozk}

= 2(kvy + Kor)kukgo||ckllz + 2r262 Keag || ek ]2

_ 2 i 1
(1 O—C)Hlo—mln min { 1+HJ}?‘]’VH2 ) liUOék}

2(/‘€Vf + Kor) KoKy + 2/112,/13/%0%

(1_06)510m1nmin{m Ry }

b

2(kyf + Kor)kokg + 262K% Ke

which proves (5.17). The merit parameter update rule (3.10) and (5.17) give (5.18).0
We may now state our worst-case complexity result for Algorithm 3.1.

THEOREM 5.12. Suppose that Assumption 3.1 and Assumption 5.1 hold. Let € €
Ry, be given. If {k1,k2} C N are two iterations with ki < ko such that k € S and
Xk > € for all iterations k1 < k < ks, then it follows that

70(f(20) + (o) — fint) + llc(wo)]|2
5.19 ko — k1 <
(5.19) 2 — k1 < L e
with Ke = Ne Min {%, ’E';“T‘;, Ferl ol min{ﬁ, Iivamin}}. Moreover, the maz-
c J

imum number of iterations before x < € for some iteration k € N is

log (2010(7,;??9+LJ))
log(¢)

+

max ¢ 0, 5
K€

X {To(fm) ~ fing + (@) + ||C(900)|2J |

Proof. Let {k1,k2} be as in the statement of the theorem. Then, for all k € S and
k1 < k < kg, it follows from Lemma 5.7(i)—(ii), k € S, (3.12), the second inequality
of Lemma 5.10, and Lemma 5.6 that

(i)‘l'k xk) - &)Tk+1 (xk-i-l) > ‘I)Tk (ﬂfk) - (i)Tk (mk-l-l) = (I’Tk (x'k) - ‘I)Tk (xk-‘rl)
2= llsellz + ocllerllz = llex + Jk8k||2))

(
5.20 y
(5.20) > 1o |:‘l'k404k (Hzck\lz) + 0. (m o2 lexll? mm{H_ . ,/@vak})]
2
|:Tk8ak (Hsofk\lz) i Tkg;l;”Z + o, (:1 mm||ck||2m1n{Hlﬁg,/ivamin})] .

Lemma 4.6, (5.20), (4.8), (5.18), (5.4), and ay < «ag for all k > 0 give

(i)‘l'k (Ik) - (i)‘l'k+1 (xk-l-l)

> o | gk + g+ Iy + 23 + 2 minan, =23
17
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+UC (Hl mlnHCk”Q min {14’%7 Kvamin}>]

|: TmmOémm

9k + e + Ty + 2ll3 + B || min{wg, — 2|3

Sao

> Ne
4o, ('ﬂ mchkHzmm{ﬁg,nvamin})}
> /%Xk

where rg is defined in the statement of the current theorem. Using this inequality,
Lemma 5.7(iii), and nonnegativity of ®, for all 7 € R, we find that

(i)To (SL’()) > (i)‘l'kl (mkl) > (I)Tkl (mkl) - (i)‘l'kg (xk?z)

ko—1 ko—1
= § ((I)‘I'IC (Ik?) ®Tk+1 xk}+1 E K@ka
k‘=k1 k= kl

which may be combined with xj > € for all iterations k1 < k < ks to conclude that
®(20) > (ko — k1)kae?,

from which (5.8) follows. The final result in the theorem, namely the claimed upper
bound on the maximum iterations before x, < €, follows from what we just proved
and the fact that maximum number of unsuccessful iterations is bounded as in (5.5).0

5.2.3. Analysis under a limit-point constraint qualification. The analysis
in this section is performed under Assumption 3.1 and the following two assumptions.
Before stating them, we remark that all of the results from Section 5.2.1 still hold.

ASSUMPTION 5.2. The set X in Assumption 3.1 is bounded.

ASSUMPTION 5.3. Let L denote the set of limit points of the sequence {xy} gen-
erated by Algorithm 3.1. FEvery x. € L satisfies the LICQ, i.e., if . € L, then
[J(z)T, Iﬁ(z )]T has full row rank with 14,y denoting the subset of the rows of the

identity matriz I that corresponds to the index set A(x,) := {i € [n] : [x4]; = 0}.

The previous assumption has important consequences in terms of a certain type
of infeasible point (see Lemma 4.5(ii)), as we now define.

DEFINITION 5.13. We say that T € R™ is an infeasible stationary point (ISP) for
problem (1.1) if and only if T € Q, T = Projo (T — J(Z)T¢(T)), and ¢(T) # 0.

We now show that any limit point of the sequence of iterates cannot be an ISP.
LEMMA 5.14. If z. is a limit point of {xx}, then z. cannot be an ISP.

Proof. Let x, € R™ be a limit point of {x;}. Suppose that z. € Q and z. =
Projg(z« — J(z«)Tc(x,)). The proof will be complete if we can show that c(x,) = 0
since this would prove that x, is not an ISP. Thus, we now prove that ¢(z.) = 0.

It follows using the same proof as in Lemma 4.5 with z; replaced by x, that
7. = Projg(z« — J(xs)Tc(x,)) implies that x, is a first-order KKT point for the
feasibility problem (3.3). Therefore, there exists z, € RZ, satisfying =, - z, = 0

(componentwise), and J(z.)Tc(x.) = z.. It follows from these equations and Z (x*)
[n] \ A(z,) that [J(z.)"c(x.)]z(z.) = 0, where we also note that Z(z,) # 0 as

consequence of Assumption 5.3. Letting Jz(,.)(z«) denote the columns of J(z,) t h
correspond to the indices in Z(z.), it follows from above that 0 = [J(x.)T ¢(z. )] D)=
[Jz(z.y(@:)] T e(xy). Since Jz(z.) () must have full row rank (see [44, Lemma 2.1.3])
it follows that ¢(z,) = 0, which completes the proof. 0
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The next result bounds ||vg(1)||2 by the infeasibility of the equality constraints.
LEMMA 5.15. For all k € N, it holds that ||vk(1)]l2 < Kslck|2-

Proof. Tt follows from the definition of vg(1) in (3.6), z € Q for all k € N by how
Algorithm 3.1 is designed, non-expansivity of the projection operator, and (3.12) that

lve(D)ll2 = || Projo(zx — Ji cx) — axll2 = || Projg(zx — Ji ck) — Projg (a)2

< [ Ji ekll2 < kallerllz,

which completes the proof. 0
We can now prove that our infeasiblity measure converges to zero.
LEMMA 5.16. The iterate sequence {xy} satisfies limg_yo0 [|Uk(1)|l2 = 0.

Proof. From Theorem 5.12, it follows that there exists a subsequence K1 C N such
that limgexc, ||vr(1)]|]2 = 0. Now, for the purpose of reaching a contradiction, assume
that there exists a subsequence of iterations ICo C N\ Ky and a scalar vmin € Ry
such that ||vg(1)]|2 > Umin for all & € Ko. We now proceed by considering two cases.

Case 1: {7} — 0. The definitions of Ky and K5 allow us to define, for each k € K4,
the quantity I%(k) as the smallest iteration in Iy that is strictly larger than k. We can
use this definition, Lemma 5.15, {7} — 0, (3.12), Lemma 5.7(iii), and nonnegativity
of r to conclude that the following holds for each sufficiently large k € KCy:

. C\T3
Umin _ lle(@g, )2

2KZJ - 2
<O, (z) = 7 (fi — finr +7(@r)) + le(zn)ll2 < 2|ckl2-

< Thk) (ffc(k) — fine + T(I;;(k))) Flle(@rgy)llz = Py, ()

It follows from this inequality and the definition of IC; that

Umin

> 0.
2/€J

li 1)|l2 =0 and liminf >
Jim (1)l =0 and liminf feg|2 =
Therefore, every limit point of {zx}reic, must be an ISP, and at least one such limit
point must exist as a consequence of Assumption 5.2. This contradicts Lemma 5.14.
Case 2: {71} is bounded away from zero. In this case, it follows from The-
orem 5.8(i) that the proximal parameter sequence {ay} is also bounded away from
zero. Given the manner in which both sequences are defined in Algorithm 3.1, we can
conclude that there exists £ € N such that 7, = 7, > 0 and ap = o, > 0 forall k > k.
We may now use the same logic as in the proof of Lemma 5.8(i) and (3.12) to obtain

oo > P, (zg) >

(Pr(28) = Py (Th41))

e

Z Z ((i‘rpC $k)—(i)7k+1($k+1))
k<kes

> 3 mezraglon()fmin { Hha moag b
k<kes

—

which implies that limges ||vk(1)||2 = 0. Combining this result with the fact that
Zp+1 = o whenever k ¢ S and that the definition of vg(1) depends only on xy, the
projection onto {2 (which is continuous), and the continuous functions ¢ and J, it
follows that limg_o [|vk(1)]]2 = 0. This contradicts the definition of KCs.

19

This manuscript is for review purposes only.



614
615
616
617

618

623
624
625
626
627
628

629

Since we have shown that both Case 1 and Case 2 cannot occur, and these are
the only cases that can possibly occur, we must conclude that our original assumption
was incorrect, namely the existence of the set 3. This completes the proof. ]

Next, we formally establish that £ is a compact set.
LEMMA 5.17. The set L in Assumption 5.3 is compact.

Proof. By Assumption 5.2, the set £ is bounded. It remains to show that L is
closed. To this end, suppose that {9634}3‘21 C £ and z* € R” satisfy lim; xf = z%;
we prove that #* € L. Let us define a sequence K = {k1, ko,...} C N. In particular,
let k; be the smallest integer such that the iterate xy, satisfies |25 — x, [l < 1. We
then iteratively define k; for j > 2 as the smallest integer k; such that k; > k;_; and
the iterate xy, satisfies ||z — 2, [l2 < 1/j. In summary, K = {k1,ks,...} CNis a
strictly monotonically increasing subsequence of N such that ||a:3C — ;e < 1/5 for

all j. It follows from this inequality and the triangle inequality that
o =, llo < 2 = aElls + lof — i 1o < 2 — ]y + 2 for all j > 1.

Combining this inequality with lim;_, xrr = x*, it follows that lim; oo g, =

c
J b
which proves that z© € £ as claimed, thus completing the proof. 0

The next key lemma uses the function 6(-) : R™ — Ry, defined as

5.21 Omin () := mi i
(5:21) (@)= min [2

which gives a measure for how far the inactive variables at « are from being active.

LEMMA 5.18. The following hold for the set of limit points L:
(i) There exist ng €N, {xF}le, C L, and {eF}]5, C Ry such that
(a) L C U~ B(xf ,ef), and

L L
(b) if, for some j, it holds that x € B(x},€j), then

(5.22a) 2 = 2 [l2 < §6min(27),
(5.22b) A(z) C A(z; £), and
(5.22¢) Fmin ([ ()", Toe)] )z%amm(w(xj) Thae)]")-

(ii) For the ob]ects in part (i), there exists -
dist(z, £) <

min € Ry such that if T € R™ satisfies
then T € UL, B(zF, €F) and there exists j € [ng] such that

m1n7 ’L b2

O’mln([‘](‘f)TV[i(@f)] ) > Zg}lr};] 20-m1n([J(‘rZL)T,I£($fL)]T) = Urflin > O,

where the inequality o%. > 0 is a consequence of Assumption 5.3.

Proof. For 2* € L, let e(z* ) eR.y satisfy that if € B(z%, e(x )) then Z(z%) C
I(@), [lo = 2“2 < 30min(z“), and owmin ([J(2)7, Ty e)]") = 252 ([ (29), Lye)]T),
where satisfying the third condition is possible because of the continuity of singu-
lar values of a matrix with respect to its entries and Assumption 5.3. It follows
that Uyec Bz, e(z%)) is an open cover of the compact set £ (see Lemma 5.17).
Using this fact and the definition of a compact set, it follows that there exists a
finite subcover, i.e., there exist ng € N, {zf}!4, C £, and {e£}I', C R, such
that £ C U"le( €f) and if, for some j € {1,2,...,n,}, it holds that = €

20
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B(z% 5, J)then Z(x; £y C I(x), ||z £||2 %6 ( £), and omm([J(x) ’If\(xﬁ)] )2
%O'min([J( LT IT( )]T). Since Z(2%) C Z(x) is equivalent to A(x) C A(zF), we

have completed the proof of part (i).

We now prove part (ii). First, using the ﬁm'te subcover computed in part (i)
and the fact that E is compact, there ex1sts ki € Ry such that if z € R" sat-
isfies dist(z, £) < then x € Ul B(zF,€f). Let T be an arbitrary point that

mm’ xys €

satisfies dist(Z, L) < e€5;,. Then, it follows that there exists j € {1,2,...,n.}

min*

such that ¥ € B(x; £ €£), which combined with part ()(b) gives A(Z) C .A(:z:jﬁ) and

’ J

amm([J(f)T,IA(z@)] ) > amm([J(:cf)T,Iz(w_ )} T) > £, > 0, as claimed. O
The next result shows that iterates of the algorithm eventually satisfy the prop-
erties of the previous lemma.

LEMMA 5.19. There exists k € N such that, for each k >k, there exists a corre-
sponding j € [ng] that satisfies, with o%,  defined in Lemma 5.18(ii), the following:

(5.23a) |k — 2512 < $6min (@),
(5.23b) Alzr) € Azf), and
(5.230) Um]n([Jk; 5 .A(x )}T) > %Umin([t]( J) Iz;(z )] ) = Umln > 0.

Proof. Let €5, > 0 be defined as in Lemma 5.18(ii). Smce L is the set of all limit
points, there exists an iteration k such that dist(xy,£) < €5, for all k > k (this &
is now the k& whose existence is claimed in the statement of the current lemma). For
the remainder of the proof consider arbitrary k& > k. It follows from the definition
of k that dist(xy, E) < €£,., and then from Lemma 5.18(ii) that there exists j € [n.]

such that zy € B(x% ¢£). Conditions (5.23a)—(5.23¢) now follow from Lemma 5.18.0

L€ )
We now give a lower bound on |vg(1)||2 in terms of ||ck|l2, which is crucial to
giving a lower bound on the merit parameter sequence. The result uses the constant
(5.24) 65, := min 6min(ac§) > 0.
J€lnc]
LEMMA 5.20. For all sufficiently large k € N, it holds that ||v(1)||2 > o5, llck |2,
where the positive constant o, is defined in Lemma 5.18(ii).

Proof. With 6%, in (5.24), Lemma 5.16 ensures the existence k; such that
(5.25) e (D)2 = ||Projg (zx — JEey) — mkH2 < 1oL forall k > k.

3 “min

Let {€5;,, 05,1 C R, be as stated in Lemma 5.18, and let ks play the role of k from
Lemma 5.19. For the remainder of the proof, consider arbitrary k > max{ky,k2}. It
follows from the definition of ks that x) satisfies (5.23a)—(5.23¢c) for some j € [n.].
Using (5.25), (5.23a), and definitions of dyin(2%) and 65, each i € Z(z¥) satisfies

min?

[PrOjQ(.Tk - chk)]i > [wk]l éérfun > [ ] léﬂliﬂ(‘rj[':) é(srlr:un
> 6min(xf) - %5min($§) l(srfun = %6min(z§:) 16r€1m
2L L _ 15L
2 gam 5m1n - 3§m1n

Hence, for all i € Z(z¥) it holds that [z} — J ¢x]; > 0. Now, define wy, € R™ as
if i € Z(zf),

0
{—[JkTCk]i — (1)) ifie A(xf).
21
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The definition of wy, the fact that [z} — J ¢x]; > 0 for all i € Z(z%), and (5.23¢) give
oDy = ||Projo(zr — Ji ex) — k|, = || =Tk ex — wil],
T T Ck
= | )]

[wk]A(ij) 2 Jrflin”Ck”?»

2

which completes the proof. 0
Our next result gives a new bound on the model decrease.

LEMMA 5.21. For k1 € (0,1] in Lemma 4.3, all sufficiently large k € N satisfy
c L \2 : 1
(5.27) lekllz = llex + Jrvillz 2 K1(omim) " llckll2 min  —— Ko ¢ -
1+ k%5

Proof. If &, = 0, then either ||cx|l2 = 0 and the inequality holds trivially, or
lek|l2 # 0 and the algorithm terminates finitely, which is a contradiction to our overall
setting in this subsection that the algorithm does not terminate finitely. Therefore, we
may proceed assuming 0y # 0. It follows from Lemma 4.3 that ||c; + Jpvgll2 < [[ck|l2-
Using this inequality and a difference-of-squares computation, we have that

llexl3 = llex + Jwvgll3 = lexllz + llex + Jevgll2)(lerllz = ller + Jevgll)

(5.28) X
< 2flexll2(llexllz = ller + Txvill2)-

Combining (5.28), (4.4), Lemma 5.20, and (3.12), all sufficiently large k € N satisfy

2[|exll2(llerllz = llew + Jrvill2) > lleell3 — llek + Jevill3 = 2(me(0) — my(vg))

> 2k1|v (1)||2min{ ! fae }
2 2k1]|vk T ek
’ L [l Tl

. 1
> 2 oy e i { g o |

If ||cx]l2 = 0, then again the desired inequality holds trivially. Otherwise, dividing the
above inequality by 2|/ck||2 gives (5.27), and thus completes the proof. 0

We now bound the merit and proximal parameter sequences away from zero.

LEMMA 5.22. Let k > 0 be sufficiently large that the results in Lemma 5.20 and
Lemma 5.21 hold. Then, each k > k yields

(1 —0¢)k1(0E;,)? min {(1*%1?,)70’ H”}

2(kv s + Kor)kokg + 2R265 K,

(529) Tk, trial > 7irnin,tm'al = > 0.

The merit parameter sequence itself satisfies, for all k € N, the inequality
(5.30) Tk 2 Tmin ‘= min{Tg,la (1- 6-1')77—min,trial)} > 0.

Finally, the prorimal parameter sequence satisfies, for all k € N, the inequality
(5.31) Qg 2 Qmin = min{ao, g5y} > 0.

Proof. We first prove (5.29). If Ay, < 0in the definition of 7% tria1, then 7y tria1 = 00
so that (5.29) trivially holds. If Aj > 0, then it follows from the definition of 7% tyial,

22
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708 Sk = Uk + ug, Jpur = 0 (see (4.8b)), Lemma 5.4, Lemma 5.21, the fact that a; < ag
709 for all k by construction of Algorithm 3.1, and (3.12) that each k > k yields

(1- Gc)(HCkllz — llek + Jrvell2)

710 Tk,t jal =

ria gFsi + 204k llsell3 + r(zk + sk) — Tk

(1 - UC)K&l( mm) ||Ck||2 min %7 Koy Ol
1+HJ

711
' = 2(kvy + Kor)kokgag|ckllz + 26283 Keag|ck |2
o (1= oe)r1(ogm)? min{mvﬂv}
o1

2(kvf + Kor)koky + 26265 Ke
713 which proves that (5.29) holds for all k > k, as claimed. The merit parameter update
1 rule (3.10) and (5.29) give (5.30). Finally, (5.31) follows from (5.30) and Lemma 5.6.0

715 The next result establishes that the norm of the search direction converges to zero
716 along the sequence of successful iterations.

-3

-~
~

LEMMA 5.23. The search direction sequence {si}res satisfies limges ||sk]|2 = 0.

718 Proof. We first note that the derivation of (5.20) still holds under the assumptions
719 of this section, and therefore we know that
720 (532) (i)Tk(xk) q>7’k+1 karl Zn‘Pgak Hsk”2

keS

721 Using nonnegativity of @, in (5.7), Lemma 5.7(ii)-(iii), and (5.32), we have that

792 00 > Z 7o (@k) = Pryyy (T41)) ZWI) 82“k (e
keS keS

723 Lemma 5.22 gives T, > Tymin > 0 for all k € N, where Ty, is defined in (5.30), so that
724 Y res e g‘;‘(‘)‘ sk||3 < oo, which implies hmkes |skll2 = 0, and completes the proof. O

725 We next prove that the sequence of Lagrange multiplier estimates generated by
726 subproblem (3.9) during successful iterations are bounded.

727 LEMMA 5.24. There exists ky. € Ry so that maxges max{||yk/oo; || 2|0} < Kyz-
8 Proof. Let k; serve the role of k in Lemma 5.19 so that the results of Lemma 5.19
9 hold for each k > ki. Let ky be sufficiently large so that [|si[2 < 305, for all
0

ky < k € S, which is possible because of how 6%, is defined and Lemma 5.23.
For the remainder of the proof, consider an arbitrary k with max{ky,k2} <k € S.
Let j € [nz] be the value guaranteed by Lemma 5.19 to exist so (5.23a)—(5.23¢) hold.
Next, consider i € Z(z L). It follows from (5.23a), the triangle inequality, the

definition of ko, and the definition of 6%, (see (5.24)) that

min

N

W oW W NN

O

lzk + s — 25 |2 < llzk — 2F ll2 + Iskll2 < §0min (@) + §05m < 30mn(@f).

This inequality, the definition of 5min(x§:) (see (5.21)), and i € I(xjﬁ) imply that

L

[xk + Sk]i Z [1’5}2 - %6min(x]4) 2 6min(x]‘) - %6m1n(x]£) = %6min(x§) > Ou

733 so that i € Z(zy+sy). Thus, Z(2§) C I(xx+s5), or equivalently A(zy+sx) C A(zF).
23
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Now, let us introduce the notation A = A(z+si). It follows from sy = vy +ug,
(4.8a), [z1]s = 0 for all i ¢ Aj (see (4.8¢)), and A; C A(z%) (see above) that

1 _ 17T 7T Ye | _qgr g7 v
gk + arsk + grwk = [T, L] [(%)AJ =i Laes)] [(Zk)A(wﬁ)} '

Combining this result with (5.23¢) and Aj, C A(z¥) it follows that

ethen =5 2]

J
Combining this inequality with the triangle inequality, (3.12), [|si[2 < 305, and
Q) > Qmin (see (5.31)) it follows that

L

min

1 L
ot o ], > o

2 2

L

1 Snin
2 S O-Iﬁin (K/Vf + 36‘miu + Har)

Since the right-hand side of this inequality is a constant and independent of k, we know
that the sequence of Lagrange multipliers over the successful iterations is bounded.O

THEOREM 5.25. Let Assumption 3.1 and Assumption 5.3 hold. Any limit point
x4 of the sequence {xy}res is a first-order KKT point for problem (1.1).

Proof. Let z, be a limit point of {xy}kes, i.e., there exists infinite £; C S
satisfying {zx }rex, — T«. From Lemma 5.16 and Lemma 5.20, we have that

(5.33) 0= lim [jvg(1)|]2 > lim o0&, [lcxl2 >0,
k—o0 k—o0

which implies that 0 = limy_, o ||ck|l2 = limgex, ||ck||2. Combining this with continu-
ity of ¢ and {zy}res — @ it follows that ¢(x,) = 0.

Next, Lemma 5.24 ensures the existence of a vector pair (y., z.) € R™ x R™ and
infinite subsequence Ko C Ky such that {(yk,2k) ke, — (Yx, 24). Also, it follows
from Lemma 5.23 and Lemma 4.6 that

_ S I . _ S
0 klér’gz Iskll2 > klélliclz || min{xg, —2zx |2 > 0,

which implies that limgeg, || min{xg, —2x }|2 = 0. Combining this with the continuity
of the min operator and {(yx, k) tkeics — (Yx, 2x) it follows that min{z., —z.} = 0.

It follows from Lemma 5.23 and (5.31) that limgex, (1/ak)||sk]l2 = 0. This fact,
(4.82), {(zk, Yk, 2k) ke, = (Tx, Ysx, 2+), and continuity of g and J give

groe = —g(@.) = J(@.) Ty — 22 = Jim (—gi — Jye — 2) = Jim g,

so that g(@.) + gr« + J(@2)Tys + 2. = 0. Tt follows from this equality, c¢(x.) = 0, and
min{z,, —z,} = 0 that z, is a first-order KKT point for problem (1.1), as claimed. O

5.3. Active set Identification. Our result in this section shows, under suitable
assumptions, that our method can successfully identify the optimal active set.

THEOREM 5.26. Let x, be a first-order KKT point for problem (1.1) with La-
grange multiplier vectors y, € R™ and z. € R, for the equality constraints and
bound constraints, respectively. Suppose that strict complementarity holds, i.e., that
max{z.,—z.} > 0. Let S C S be such that {zy}tres, — T«, {Sk}res, — 0, and
{#zktres, = z«. Then, A(xpt+1) = A(zy) for all sufficiently large k € Sy.
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Proof. We have from the optimality conditions in (4.8) that
(5.34) [|min{zy + sg, —2k}|2 =0 for all k € N.

It follows from strict complementarity that e := min{[—z,], : j € A(z)} > 0. Com-
bining this with {2z }xes, — 2. gives the existence of k € N such that ||z — 2 ||oo < €/2
forall k <k € S1. Thus, allk < k € Sy and j € A(z,) satisfy [~2;]; > 5. Combining
this with (5.34) shows that [z41]; = [z + sk)s =0 for all k < k € S; and i € A(x.).
Finally, it follows from {zy }res, — @« and {sk }res, — 0 that [zgi1]; = [zp+sk)i >0
for all i ¢ A(z.) and k € S; sufficiently large, which completes the proof. d

5.4. Manifold Identification. In this section, we establish a manifold iden-
tification property for Algorithm 3.1 under certain assumptions. For the definition
of a C?-smooth manifold M C R™ at a given point in R", see [37, Definition 2.3].
Our result assumes that the regularizer r is partly smooth relative to a manifold at a
first-order KKT point; see [37, Definition 3.2].

To motivate our assumption that the regularizer is partly smooth, consider r(x) =
llz]|1 and z. € R™\ {0}. Define the set M = {x € R™ : sgn(z;) = sgn([z.];) for i €
Z(z.), and x; = 0 for i € A(x,)}, which is a (|Z(z.)|)-dimensional C?-smooth mani-
fold around the point x,. Then, r is partly smooth at x, relative to M.

We are now ready to present our manifold identification property of Algorithm 3.1.
The proof borrows ideas from [35, Lemma 1] and relies on [37, Theorem 4.10].

THEOREM 5.27. Let x, be a first-order KKT point to problem (1.1) with Lagrange
multiplier vectors y. and z., and suppose that r is convex and partly smooth at x,
relative to a C?*-smooth manifold M. Assume that the proxzimal parameter sequence
{ak}ren is bounded away from zero, that there exists a subsequence Sy C S such that
{(zk, Sk, Yk, 2k) thes, = (Tx,0,Yx, 2), and that the non-degeneracy condition

(5.35) 0 € {g(z.) + () ys + 2.} + relint(dr(z.,))

holds, where relint denotes the relative interior of a conver set. Then, it follows that
Tr+1 € M for all sufficiently large k € Sy.

Proof. Let us define § = —(g(zs) + J(2+)Ty« + 2.), and note from (5.35) that
g € relint(dr(x.)). Next, since r is convex, it is prox-regular [37, Definition 3.6] at .
with 7. It also follows from 7 being convex (thus continuous), {zx}res, — Z«, and
{8k }kes, — 0 that {zy + sgtres, = =« and {r(xg + sk)}res, — r(z+). Combining
these observations with the assumption in the statement of the theorem that r is partly
smooth at z, relative to a C%-smooth manifold M, means that every assumption
in [37, Theorem 4.10] holds (with r and x. here playing the role of f and Z in [37,
Theorem 4.10]). To use [37, Theorem 4.10]) to establish our manifold identification
result, it remains to prove that {dist (7, Or(zx + sk)) }res, — 0, as we now show.

It follows from the triangle inequality, (3.12), and (3.13) that

[T (xk + 85) Ty — T (21) k|2
(5.36) < 1 @k + 58) Ty — (@) Ty + T (@0) Ty — T (@) Tyill2
< Lyllskllzlly«ll2 + csllyx — y«ll2 for all k € N.
25
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Using (4.8a), grx € Or(zk + si), (3.12), and (5.36), we have that
dist (—g(zk + sk) — J(xk + s6) yu — 24, Or(zp + 51))
< ||—9($k +55) — S+ 55) Y — 2 — gr,k||2
Hg(xk +si) — g(zr) + (J(@e + s6) Ty — J(@e) i) + (2 — 21) — a%Sk‘L

< llg(an + sx) — glan)llz + 17 (@n + 1) Ty = J(@r) Tunllz + 120 = zill2 + 2= llskll2
< Lyllskllz + Lullskll2lly«llz + wsllus = yulla + 26 = 22 + 5= llskll2 for all k € N.

A

This inequality, {(x, Sk, Uk, 2k) tkes; — (T4, 0, Y, 24), and {ay} bounded from 0 give
(5.37) {dist(—g(xg + sx) — J(xx + sk)Ty* — 2w, Or(zk + k) res, — 0.
Next, for all k € N, it follows from [15, Theorem 6.2] that

|dist(7, Or (zy, + sx)) — dist(—g(zx + sk) — J(wk + 55) T ys — 20, O (ks + 51))|
<7+ glr + sk) + J(@r + s6) ye + 24l2,

which immediately implies that

dist (7, Or(zy + si)) < dist(—g(zx + sk) — J (2 + s6) Yo — 24, Or (T + 81))
+ |7+ g(@r + s) + J(xr + s1) Tye + 24 |2

Combining this inequality with (5.37), {(xk, Sk, Yk, 2k) }kes, — (%,0,ys, 2), and
continuity of g and J shows that {dist (g, Or(zk + sk)) tres, — 0, which was our goal.
We can now apply [37, Theorem 4.10] to conclude that zj + s € M for all sufficiently
large k € §1. Since zp41 = x + s for all k € Sy, the proof is completed. 0

6. Numerical Results. We present results from numerical experiments con-
ducted using our Python implementation of Algorithm 3.1. The test problems employ
the /1 regularizer, a widely adopted choice to induce sparse solutions. Our numerical
evaluation has two primary objectives: to demonstrate the numerical performance of
our method using standard optimization metrics, and to assess its capability to cor-
rectly identify the zero-nonzero structure of the solution. Our test problems include
special instances of £;-regularized optimization problems from the CUTEst [23] test
environment, and instances of sparse canonical correlation analysis.

6.1. Implementation details. Given vf in (3.6) as the Cauchy point for sub-
problem (3.1), to find a vy satisfying the conditions in (3.4), we first compute

(6.1) vl 1= arg m]%n mi(v) st ||v]loo < KoCapdr, Tk +v €
veR™

with k3° € Ry, which differs from (3.1) only in its use of the infinity-norm. Our
motivation for using subproblem (6.1) is that the feasible region only consists of
simple bound constraints, which can be handled efficiently by solvers. As long as
kP < ﬁlﬁv (which we choose to hold), the solution vg° to (6.1) satisfies |[vp°|2 <
Vl|vil]lco < VKL gl < Ky, meaning that ve° satisfies the first two conditions
in (3.4). To ensure that the third condition is also satisfied, we set

e vy it mg(vf) < mi(vR®),
F vp®  otherwise.
26
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To solve subproblem (6.1), we use the barrier method in Gurobi version 11.0.3 [24].

Next, to solve subproblem (3.9) (as needed in Line 12 of Algorithm 3.1), we exploit
the structure of the £;-norm. By introducing variables (p, q) € R, x R%; and using
e to denote a ones vector of appropriate dimension, we solve the equivalent problem
9w+ g ulls + Srvgu+ A (0 +9)

min a
(6.2) (u,p,q) ER™ XxR™ xR

st. Jyu=0, zp+vp+ue, p>0, ¢g>0.

Problem (6.2) is a convex QP that we solve using the dual active-set QP solver
in Gurobi. In Algorithm 3.1, the proximal parameter aj remains unchanged, i.e.,
ag4+1 < o (Line 19), whenever the sufficient decreasing condition at Line 18 is
satisfied; in our implementation, we instead update it as aj+1 < max{¢ tay, 10},
which allows the proximal parameter to possibly take larger values. We found this
update strategy to work better in our testing, all of the analysis of Section 5.2.3
still holds, and the analysis of Section 5.2.2 still holds if this modified update is only
allowed a finite (possibly large) number of times.

The parameters used and initial proximal parameter value are presented in Ta-
ble 6.1. The starting point xg and initial proximal-parameter value g used for the
test problems will be specified in Section 6.2—6.3.

TABLE 6.1
Parameters used by Algorithm 3.1. Recall that k3° appears in (6.1).

T_1 Ky K 0. €& & v Ne Nm

1 10° 1072 01 01 05 05 10°% 1074

Algorithm 3.1 is terminated when one of the following conditions is satisfied.
e Approximate KKT point. Algorithm 3.1 is terminated during the kth
iteration with z;, considered an approximate KKT point if ||ck|lz < 107°,
gk + grk + Ty + 2kll2 < 1074, and || min{ay, —z}[2 < 1072
e Time limit. Algorithm 3.1 is terminated if the running time exceeds 1 hour.
As is common in the literature, we scale the problem functions. In particular, the
objective and its gradient are scaled by the scaling factor

100
P v > 100,
(6.3) scale_factor = ¢ ||V f(20)|leo iV (o)l
1 otherwise.

A similar scaling strategy is applied to each constraint ¢; for 1 € [m)].

For comparison, we consider the solver Bazinga,' which is a safeguarded aug-
mented Lagrangian method and, to the best of our knowledge, the only open source
code that can solve problem (1.1); see [18] for more details. The Bazinga algorithm
is terminated when one of the following conditions is satisfied.

e Approximate KKT point. Bazinga is terminated if a certain primal fea-
sibility and dual stationarity measure are less than 1076.

e Not a number. Bazinga is terminated if a NaN occurs.

e Time limit. Algorithm 3.1 is terminated if the running time exceeds 1 hour.

IThe code package of Bazinga is downloaded from https://github.com/aldma/Bazinga.jl
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6.2. CUTEst test problems. We first conduct experiments on a subset of the
CUTEst test problems. Given the objective function f, equality constraint cg(z) = 0,
inequality constraints ¢; < ¢;(z) < ¢, for some constant vectors ¢; and ¢,, and bound
constraints b; < x < b, for some constant vectors b; and b, all supplied by CUTEst
for a given test problem, we solve the £;-regularized optimization problem

(6.4) min £(z) + Allal)1 s.t. { C(E("’i) 5} ta=0, m < m < M

(z,5,0) CRAFmI+m cr(x) & s Cu

where my is the number of inequality constraints and A € Ry is a regularization
parameter. The slack vector s is introduced to reformulate inequality constraints as
equality constraints plus bound constraints. The vector a is introduced in this manner
so that we can control its sparsity for illustrative purposes in our experiments.

The subset of CUTEst problems were chosen based on the following selection
criteria: (i) the objective function is not constant; (i) the number of variables and
constraints satisfy 1 < m < n < 100; (iii) the total number of inequality constraints
satisfies m; > 1. For the choice of A\, we consider the following optimization problem

(6.5) min f(z) st [ cx () S} =0, m < m < {b“]

ZER™, SER™I cr(x) — s Cu

and let (Z,S) be a first-order KKT point of this problem with Lagrange multiplier
Yeq associated with the equality constraints. Then, if A > ||Yeqllco, the point (Z, §,0)
is a first-order KKT point for the optimization problem (6.4). With this observa-
tion, we set A = ||Yeqlloc + 10 where y.q is computed by solving problem (6.5) using
IPOPT [50]. Problems that are not successfully solved by IPOPT are removed from
the test problems. The final subset consisted of 81 CUTEst test problems.

For our tests, we set ag = 10 and x( as the initial point supplied by CUTEst.

We compare the performance of Algorithm 3.1 and Bazinga using several metrics;
the results of our tests can be found in Table 6.2. The meaning of the columns found
in Table 6.2 are described in the following bullet points.

e Feasible. The number of test problems for which the corresponding method
terminates at a point with constraint violation less than 10~6. For this metric,
we see that the two methods behave similarly, with Algorithm 3.1 achieving
approximate feasibility on four more test problem.

e Feasible, Better Objective. To understand the meaning of this column,
let falgorithm 3.1 denote the final objective value returned by Algorithm 3.1
and fBasinga denote the final objective value returned by Bazinga. We then
define the relative difference in the returned objective function values as

(6.6) faife := fBa?inga — [Algorithm 3.1 .
max(l, ‘ mln(fBazingaa fAlgorithm 3.'1)|)

We say that Algorithm 3.1 (resp., Bazinga) has a better relative objective
value if fgig > 1076 (vesp., fair < —107). Using this terminology, column
“Feasible, Better Objective” gives the number of test problems for which both
algorithms terminated at a point with constraint violation less than 1075 and
the corresponding method has a better relative objective value. For this
metric, Algorithm 3.1 outperforms Bazinga on 8 additional problems.

e Performs Better. The number of test problems for which the correspond-
ing method either (i) meets the constraint violation tolerance and the other
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method does not, or (ii) both methods reach the constraint violation tolerance
and the corresponding method has a better relative objective value (see (6.6)).
For this metric, Algorithm 3.1 outperforms Bazinga by one problem.

a is Zero. The number of test problems for which the corresponding method
returns a = 0. Algorithm 3.1 outperforms Bazinga on this metric, with Algo-
rithm 3.1 (resp., Bazinga) returning a = 0 on 76 (resp., 55) of the problems.
a is Small. The number of test problems for which the corresponding method
returns ||al|o < 1078, thus indicating that a is small (possibly equal to zero).
When comparing this column with column “a is Zero”, we see that the only
difference is that Bazinga returns a small (nonzero) value for a on one addi-
tional test problem; the results for Algorithm 3.1 are unchanged.

KKT Found. The number of test problems for which the corresponding
method terminates with an approximate KKT point. Algorithm 3.1 outper-
forms Bazinga with Algorithm 3.1 (resp., Bazinga) returning an approximate
first-order KKT point on 70 (resp., 58) of the problems tested.

TABLE 6.2

Algorithm 3.1 versus Bazinga on various performance metrics related to solving problem (6.4).

Method Feasible Feasible, Performs | a is ais KKT
Better Objective | Better Zero | Small | Found
Algorithm 3.1 71 13 14 76 76 70
Bazinga 67 5 13 55 56 58

We conclude this section by comparing the computational times of Algorithm 3.1
and Bazinga. Figure 6.1 is a Dolan-Moré performance profile [19] for timings, capped
at t = 1000. The results show that Algorithm 3.1 (red line) outperforms Bazinga
(purple line); see [19] for details on interpreting this figure.

10 Dolan-Moré Performance Profile

= Algorithm 3.1
- Bazinga

0.8

e
)

proportion
I
»

0.2

0.0
10° 10t 102 103

F1a. 6.1. More-Dolen performance profile comparing Algorithm 3.1 and Bazinga in terms of
wall-clock time on the subset of CUTEst test problems discussed in Section 6.2.
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6.3. Sparse canonical correlation analysis (SCCA). We now evaluate the
performance of Algorithm 3.1 on the SCCA problem [52] formulated as

min — wy Saywy + A([[we 1 + [Jwy|1)
(67) €, R
s.t. wfilmwg; <1, ngyywy <1,
where ¥,, = XX7T and Ygy = YYT represent the covariance matrices for data

matrices X € R™*" and Y € R™*¥ | respectively, and Yay =X YT represents the
cross-covariance matrix between X and Y. Problem (6.7) aims to identify sparse
weight vectors w, and w, that maximize the correlation between the transformed
views of X and Y while the variance constraints prevent trivial solutions where the
weight vectors are arbitrarily scaled to inflate the correlation.

Following the approach of [13], we generate synthetic data matrices X and Y as

e 0
X = —e| +& |uf and Y = el +& ul,
0 —e

where e € R"/% represents an all-ones vector, & € R™ and & € R™ are noise
vectors with entries sampled from N(0,0.01), and v € RY is a random vector with
entries u; ~ N(0,1). This construction creates a known ground truth structure: the
first n,/4 rows of X are correlated with the last n,/4 rows of Y. Consequently, the
ideal sparse solutions for w, and w, should have non-zero elements confined to the
first n, /4 and last n, /4 indices, respectively.

To evaluate the quality of a solution returned by a solver, we compute various
metrics: the correlation coefficient p,,, sparsity ratio sr, for vector w,, sparsity ratio
sry for vector w,, overall sparsity ratio sr, variance bound-constraint violations voc,
and vocy, and sparsity level s/, which are defined as

_ wzzwywy _ ng — [lwello
sz - , STy = ni’
V@I Sarws) W] 2y w,) :
o, = P lhnllo. o (1t 1) = Qo+ o)
Ny Ny +ny

V0C; = max (ngme -1, O) , voc, = max (ngyywy -1, O) , and
sl = |[[wz][n, 4t 1:n,) lo + [ [wyl 130, 7411 llo-

We consider SCCA test problems of three different sizes with n, = n, = N €
{200,400,800} and regularization parameters A € {1072,1073,10~*}. For each prob-
lem instance, the starting point xg is obtained by solving the generic canonical
correlation analysis problem (no regularization term) using the CCA class from the
scikit-learn package. We set the initial proximal parameter as ag = 1073. The
algorithm terminates when one of the conditions detailed in Section 6.1 is satisfied.

The results in Table 6.3 demonstrate the effectiveness of Algorithm 3.1 on SCCA
problems. First, the correlation coefficient achieves the maximum possible value on
every test case. Second, every solution exhibits the correct sparse structure since
sl = 0. Third, the algorithm produces solutions with varying sparsity levels that
are controlled by the regularization parameter A\, with higher sparsity ratios achieved
by larger A values. Finally, constraint violations are smaller than 107°. Table 6.4
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TABLE 6.3
Performance metrics for Algorithm 3.1 when solving problem (6.7). Time is measured in seconds.

Ng = Ny A Py STy STy ST sl V0C, V0Cy time
1072 | 1.0000 99.50% 99.50% 99.50% 0O 0 0 76.89
200 1073 | 1.0000 99.50% 99.50% 99.50% 0 0 0 87.36
10=* | 1.0000 89.50% 90.00% 89.75% 0 0 1.03e-11 117.14
1072 ] 1.0000 99.75% 99.75% 99.75% 0 1.40e-9 0 128.40
400 1073 | 1.0000 99.50% 99.00% 99.25% 0 9.83e-11 0 348.44
10~* | 1.0000 83.50% 82.75% 83.13% 0 9.46e-11 1.67e-10 226.48
1072 | 1.0000 99.88% 99.88% 99.88% 0 5.86e-9 3.34e-9  279.18
800 1073 | 1.0000 99.63% 99.88% 99.75% 0 6.33e-10 1.81e-9  899.06
10~* | 1.0000 96.63% 95.63% 96.13% 0 0 1.47e-10  463.84
TABLE 6.4
Performance metrics for Bazinga when solving problem (6.7). Time is measured in seconds.
Ng = Ny A Py STy STy sr sl V0C, voCy time
1072 1 1.0000 99.50% 99.50% 99.50% 0 4.02¢-9 3.34e-8 86.10
200 1073 | 1.0000 99.50% 99.50% 99.50% 0 1.96e-8 0 251.97
10=% | 1.0000 92.00% 87.50% 89.75% 0 0 0 164.08
1072 [ 1.0000 99.75% 99.75% 99.75% 0 6.62c-9 1.32e-8  556.60
400 1073 | 1.0000 97.50% 97.75% 97.63% 0 0 0 744.31
10=% | 1.0000 77.75% 85.00% 81.38% 0 0 0 713.13
1072 [ 1.0000 98.75% 98.38% 98.56% O 0 2.35e-9  2958.89
800 1073 | 1.0000 88.63% 97.25% 92.94% 0 0 2.00e-8  2789.95
1074 | 1.0000 81.38% 78.75% 80.06% 0 6.55e-8 0 2612.26

reports the performance of Bazinga on the same problems. Notably, Algorithm 3.1
attains sparsity ratios that are at least as high as those of Bazinga (sometimes strictly
higher), while requiring less computational time.

7. Conclusion. We presented the first proximal-gradient—type method for reg-
ularized optimization problems with general nonlinear inequality constraints. Simi-
lar to the traditional proximal-gradient method, we proved that our approach has a
convergence result (under an LICQ assumption), a worst-case iteration complexity
result (under a stronger assumption), as well as a manifold identification property
and active-set identification property (under standard assumptions).
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