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STOCHASTIC GALERKIN METHOD AND HIERARCHICAL
PRECONDITIONING FOR PDE-CONSTRAINED OPTIMIZATION *

ZHENDONG LIT, AKWUM ONWUNTA', AND BEDRICH SOUSEDi{K?

Abstract. We develop efficient hierarchical preconditioners for optimal control problems gov-
erned by partial differential equations with uncertain coefficients. Adopting a discretize-then-optimize
framework that integrates finite element discretization, stochastic Galerkin approximation, and ad-
vanced time-discretization schemes, the approach addresses the challenge of large-scale, ill-conditioned
linear systems arising in uncertainty quantification. By exploiting the sparsity inherent in generalized
polynomial chaos expansions, we derive hierarchical preconditioners based on truncated stochastic
expansion that strike an effective balance between computational cost and preconditioning quality.
Numerical experiments demonstrate that the proposed preconditioners significantly accelerate the
convergence of iterative solvers compared to existing methods, providing robust and efficient solvers
for both steady-state and time-dependent optimal control applications under uncertainty.

1. Introduction. Optimal control problems governed by partial differential equa-
tions (PDEs) arise in numerous applications, including fluid mechanics, structural op-
timization, and inverse problems. These problems have been extensively studied over
the past decades. For a theoretical overview and computational methods related to de-
terministic problems, we refer readers to, e.g., [9, 27]. In many practical applications,
the PDE coefficients are uncertain. Such uncertainties originate from various sources,
including measurement errors, model approximations, and environmental variations,
and they are modeled as random variables or stochastic processes. Recently, there has
been an increased interest in optimal control problems governed by PDEs with random
coefficients, see e.g., [17]. These stochastic problems are inherently more complex than
their deterministic counterparts, thus necessitating specialized numerical methods.

Two alternative strategies are used for the optimal control problems: optimize-
then-discretize and discretize-then-optimize. The optimize-then-discretize approach
involves deriving continuous optimality conditions and then discretizing them. Con-
versely, the discretize-then-optimize approach discretizes the objective and the PDE
first and then solves the resulting discrete optimization problem. The discretize-
then-optimize is widely used in practice, because it allows the employment of effi-
cient numerical methods such as finite element or finite difference methods, see e.g.,
[1, 3, 4, 5, 9]. This approach is also used in this study.

In the formulation of numerical methods, discretizations in the stochastic space,
spatial domain, and potentially time domain are required. For stochastic-space dis-
cretization, several methods exist, including Monte Carlo method, stochastic collo-
cation method and stochastic Galerkin method. The stochastic collocation method
discretizes random variables using a set of collocation points, solving the resulting
deterministic PDEs at these points [8, 13, 12, 26]. The stochastic Galerkin method
expands the solution in terms of orthogonal polynomials and solves the resulting cou-
pled system of equations [10, 14, 15, 16, 21, 30].

Monte Carlo method is simple and therefore popular; however, it typically de-
mands a large number of samples for acceptable accuracy, making it computationally
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intensive for high-dimensional problems. The stochastic collocation method is in gen-
eral more efficient, but it may lose efficiency in high-dimensional random spaces, and
it becomes challenging to implement in practice. Here, we use the stochastic Galerkin
method, which systematically captures uncertainties by employing orthonormal poly-
nomial expansions, preserving optimal convergence properties while improving compu-
tational efficiency for large-scale stochastic PDE-constrained optimization problems.

In practice, it is common to combine temporal discretization (e.g., backward Eu-
ler scheme), stochastic expansions (e.g., generalized polynomial chaos expansions),

and spatial discretization (e.g., finite element method). Specifically, let ¢g,t1,...,tn,
Np,
i=1

cretization basis and 9 (€ )gil represent an orthonormal polynomial basis in the ran-
dom space. Then the state y(t,x,&) can be approximated by

denote a partition of the time interval of interest, ¢;(x) represent a spatial dis-

N, N; N

tXf Zzzynlk@ ( )'l/)k(g),

n=01i=1 k=1

where O,,(t) is a temporal basis, and y,, ; » are expansion coefficients (i.e., the degrees
of freedom of the numerical solution) in the basis {©,(t) ¢;(x) ¥x(£)}, which are
determined by a suitable numerical method.

The discretize-then-optimize approach leads to large-scale linear systems obtained
via finite element (or possibly finite difference) discretizations, which are then typi-
cally solved using Krylov subspace methods, e.g., by the generalized minimal residual
method (GMRES). These linear systems are often ill-conditioned, which causes a slow
convergence of the iterative method. To address this issue, we construct precondition-
ers that improve the convergence of iterative solvers. We note that the development
of efficient solvers is a general challenge in optimal control, including for deterministic
problems solved via duality-based approaches [28].

In this paper, we introduce a hierarchical preconditioning framework specifically
tailored for stochastic PDE-constrained optimal control problems. Although the core
concepts are inspired by preconditioners for PDE problems [6, 24, 25, 31], an applica-
tion to the Karush-Kuhn-Tucker (KKT) systems arising from optimization problems
and an extension to time-dependent problems are nontrivial and constitutes a primary
contribution of this work. We provide a systematic derivation of the preconditioner
for both steady-state and all-at-once formulation of time-dependent problems. The
method is supported by a rigorous spectral analysis, proving that the proposed pre-
conditioner is spectrally equivalent to the ideal but computationally prohibitive exact
Schur complement. The performance is then evaluated using a set of numerical ex-
periments.

The paper is organized as follows. In Section 2, we address the steady-state
stochastic optimal control problem. We introduce the problem formulation and dis-
cretization into a large-scale KKT system. Then, we construct the hierarchical Gauss-
Seidel preconditioner for PDE-constrained optimal control problems (hGSoc). In
Section 3, we extend the framework to the time-dependent case. We present an all-
at-once discretization and we develop a corresponding parallel-in-time preconditioner.
In Section 4, we provide a spectral analysis of the proposed preconditioners. In Sec-
tion 5, we demonstrate the efficiency of the proposed methods by a series of numerical
experiments. Finally, in Section 6 we conclude and summarize our work.

2. Steady-state problem. Let (2, F,P) be a complete probability space,
where (2 is the sample space, F is the o-algebra generated by €2, and P is the proba-
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bility measure. We assume that the uncertainty in our model arises from a vector of

independent random variables & = (51, e ,fms)T defined as £ : @ — & C R™«.

Let B(®) be the Borel o-algebra on ® induced by £, and let p denote the correspond-
ing probability measure. The expectation of the product of measurable functions
and v depending on ¢ defines a Hilbert space L? (®) := L? (®, B(®), 1) equipped with
the inner product

(u,0) = E [uv] = L“@“ (©) du (),

where E denotes the mathematical expectation.

We consider a stochastic PDE coefficient k(z, p), where x is the coordinate in the
physical space, and p represents random inputs. It is assumed that k(z, p) is bounded
away from zero and infinity, i.e., 0 < kpin < k(z, p) < kpax < 0o for some constants
Kmin, Kmax, and it can be represented by a truncated Karhunen-Loeve(KL) expansion

k(x, p) ~ Koz +Z V0iki(x)&( (2.1)

where ko () is the mean function, and (6;, k;(x)) is the i-th eigenpair (eigenvalue and
eigenfunctions, respectively) of the covariance function

Cx(z,y) = E[(k(z, p) — ko(z)) (k(y, p) — ko(y))], (2.2)

defined in physical domain D C R™ with piecewise continuous boundary 0D, such that

/D Cul, ) s () dy = B (). (2.3)

The system of eigenfunctions r;(z) is orthonormal in the space L?(D), and the eigen-
values 6; are arranged in a nonincreasing order. We next introduce the random
variables &;(p). They are centered, normalized, and uncorrelated. In that they satisfy

E[&] =0, E[&&] = diy, (2.4)

where d;; is the Kronecker delta. Specifically, they are defined as

1
60) = = [ () = rola)) ()

We will assume that the variables ¢; are independent, identically distributed (i.i.d.).

2.1. Problem formulation. We consider the steady-state optimal control prob-
lem given by

win (i) = 5 [ [ - wPdedu©)+ 5 [ [P dedu)+ 3 [ 1ot
(2.5)

subject to

(2.6)



where y is the state, y; is the target state, and wu is the (distributed) control. The
parameter 7 penalizes the variance o2(y) of the state y, which is defined as

/2

o(y) = VE[y —EG)7] :[/ v ElPdue)] . (27)

Observe that both the state y and control u are stochastic. In view of the Doob-
Dynkin lemma (see, e.g., [2]), both y and « admit the same parametric dependence
on ¢. In computations, we work with a finite dimensional subspace T,CL? (®, B(®), u),

spanned by a set of generalized polynomial chaos (gPC) functions {t (5)}?{:51 with

(6o, 0x) = E [ori] = A Ge(€)r(€)dp = bai, (2.8)

¥1(€) = 1, and E[y(€)] = 0 for k > 1. Considering polynomials of total degree p
and the number of random variables mg, the dimension of 7, is Ng = (™¢'7). After
the application of the stochastic Galerkin finite element discretization to (2 5)—(2.6),
both the state y and control u are expanded as

v= Z:ﬁl Zi:l Vi di(2) Yk (§), v = yoru. (2.9)

Using the KLE as given by (2.1) in the finite element discretization of the PDE con-
straint (2.6) yields the stiffness matrices A, associated with the expansion coefficients,

Ap=[(Ae)ab),  (Ar)ap = /D\/émg(x)Vqﬁa(x) -Vop(z)dz, a,b=1,2,..., Ny.

(2.10)

We note that all matrices A, share the same sparsity pattern. The global stiffness
matrix is given by A = >";* H, ® A,, where the matrices Hy are defined below.

In implementation, we use the matricized format, which utilizes the isomorphism
between RV» Ve and RV»*Ne¢  defined via the operators vec and mat. Specifically,

V =mat(v) = [v1,02,...,vN,] € RNWNe, (2.11)

where the column £ contains the coefficients associated with the basis function v, and
U = vec (V) € RV¥»Ne  We will use lowercase letters for the vectorized representation
and uppercase letters for the matricized counterpart so, e.g., R = mat(7), etc.

We will also use the notation

Hg:[h&jk}, hé,jkEEW}ﬂ[}jd)k]a E:l,...,nA, j,/{:ZI,...,Ng,
where we note that all matrices Hy are symmetric, and
H":diag(O,thj), j:27...,N§,

which is obtained from H; by setting hy 11 = 0. We note that in our settings H; = [N€7
i.e., it is an identity matrix of size N¢. Finally, we denote

M=H ®M, Ms,=H’ @ M, (2.12)
where M is the mass matrix. Using the stochastic Galerkin framework to discretize

problem (2.5)—(2.6), we get

) 1
min J (v,m) = 3 (v~ )" My~ ya) + 2y" Moy + Sul Mu,
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subject to
—Ay + Mu=g. (2.13)

The Lagrangian corresponding to this problem is

1
L(y,u\) ==y -ya) M(y- yd)+%yTMay+§uTMuHT (—Ay + Mu—g).

2
(2.14)
Applying the first-order optimality conditions to (2.14), using HY = Hy + vH?, and

na
— vy —
M,=H'©M, A=) " H®A,

we get the KKT system of equations, which can be written in the matrix form as

M, 0 —AT y Mya
0 AM MT ul=| o |. (2.15)
-A M 0 A g

The stochastic Galerkin matrix in (2.15) is symmetric, indefinite, and in general very
large. It is ill-conditioned, and therefore, a good preconditioner is required to solve
the system efficiently. Next, we introduce a preconditioner to tackle this problem.

2.2. Schur complement based preconditioner. A block-diagonal precondi-
tioner for (2.15) is given by (see, e.g. Benner et al. [5]):

M, 0 0
P .= 0o pM 0 , (2.16)
0 0 Sexact
where Sgxact is the exact Schur complement
1
Sexact = AMSTAT + BM. (2.17)

The first two blocks corresponding to (scaling of) the mass matrix are block diagonal,
and the inverses are approximated by Chebyshev semi-iteration listed as Algorithm 5.
However, forming and applying the inverse of Sgxacty is computationally prohibitive.
The primary difficulty stems from its additive structure. Therefore, the key to an
efficient solution lies in designing an approximation S that is spectrally close to Sexact
and easy to invert. Following the approach in [5], we employ the approximation

1+~

S=2ZM'2ZT, Z=A+ 5

nA
M=>"H® A, (2.18)
(=1

where

fL:Al—l—Hl—i_T’yM, Ag:Ag, £=2,...,n4.

Since Z is symmetric, we have S™' = Z7'M,Z~1. In [5], the authors studied a
mean-based preconditioner derived from (2.18) by dropping all the terms of Z except
the first term; that is, Z ~ H; ® A;. However, this mean-based preconditioner is
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only effective when the variability in the model is relatively small, but struggles as
the standard deviation increases.

In this study, we overcome this shortcoming by using hierarchical preconditioning
introduced in [24, 25] in the context of forward problems. More specifically, unlike
[24, 25], we extend this strategy to the more challenging setting — stochastic optimal
control problem, and rigorously study the spectral analysis of the new preconditioner.
To this end, we formulate the preconditioners in the matricized format. First, we
rewrite the linear system (2.15) using this format. Using (2.11) and the identity

(V@ W)vee(X) = vec(WXVT), (2.19)

the system (2.15), can be equivalently written, cf. also [5, eq. (53)], as

na
MYHY — Z ATAH, = MY, H;,

(=1
BMUH, + MTAH, =0, (2.20)
na
—Y A"YH,+ MUH, =G.
(=1

Finally, we note that a matrix-vector product with Z from (2.18) can be written as
_ naA o~ —
20 = vec (25:1 AgVHg) . (2.21)

2.3. Block-diagonal hierarchical Gauss-Seidel preconditioner. We first
recall the preconditioner for the forward PDE problem from [24]. However, in this
work, we present it in the matricized format as Algorithm 1. Moreover, we for-
mulate the corresponding preconditioner for the optimal control problem as Algo-
rithm 2-3. To set the notation, we will denote by \_/(Z-m) a submatrix of V' containing
columns 4,7+ 1,...,n, and, in particular, V = V(1.,,). There are two components of
the preconditioner. The first component consists of block-diagonal solves with blocks
of varying sizes. The second component is used in the setup of the right-hand sides for
the solves, and consists of matrix-vector products by certain subblocks of the stochas-
tic Galerkin matrix by vectors of corresponding sizes. To this end, we will write
[h,(0) ()], with (€) and (k) denoting a set of (consecutive) rows and columns of ma-
trix H; so that, in particular, H; = [ht,(lzng)(l:ng)]~ Let us also denote sy = Vec(f/(g)).
Then, the matrix-vector products can be written, cf. (2.19) and noting the symmetry
of Hy, as

i =), ([wwl ®A)uw & Vig=>_ _ Al [hwe], (222

where Z; is an index set Z; C {1,...,n¢} indicating that the matrix-vector products
may be truncated. Possible strategies for truncation are discussed in [24]. In this
study, we use Z; = {1,...,n;} with n; = ("”Ep‘:pt) for some p; < p. In particular,

we set t = {0,1,2} and with Z; = () both preconditioners in Algorithms 1 and 2-3
reduce to mean-based variants. We also note that, since the initial guess is zero in
Algorithm 1, the multiplications by F; and F44; vanish from (2.23)-(2.24).

Next, we apply the hGS strategy to form a preconditioner for the KKT system.
The preconditioner is formulated as Algorithm 2-3. It adapts the core idea of Algo-
rithm 1 to handle the coupled variables corresponding to the state VY, control VU,

6



Algorithm 1 [24, Algorithm 3] Hierarchical Gauss-Seidel preconditioner (hGS)

The preconditioner Z,ag : R — V is defined as follows.

1:

Set the initial solution V' to zero and update in the following steps:

2: Solve
AV = Ry = A, where i = 3 AV [evom] - (223)
ez,
3: ford=1,...,p—1do
4: Set £ = (ng+1:n,), where ny = (médt‘i_l) and n, = (mf;“d).
Solve
;11‘7(5) = Ry — a1 — Fa1, (2.24)
where
Eay1 = Z AV [heinny 0] » Fay1 = Z AV +1:80) [hs(nut1:80) )] -
tel, teZ;
6: end for
7. Set £ = (n, +1:ng).
8: Solve

Al‘_/(f) = R(é) — Ept1s where &1 = Z At‘_/(m“) [ht,(lcn“,)(é)] )
teT,

:ford=p—-1,...,1do
10:
11:
12:
13:

Set £ = (ny+1:n,), where ny = (médtdfl) and n, = (m’ﬁjd).

Solve (2.24).
end for
Solve (2.23).

and adjoint VA simultaneously at each hierarchical level. A key computational step
of Algorithm 2-3 entails a solve with an approximation P of the deterministic KKT
system. Since this system is relatively small and constant across all hierarchical levels,
it can be handled efficiently, for instance, by computing a direct factorization of P
once and reusing it for all subsequent solves. The overall performance of the precon-
ditioner is thus determined by the cost of these deterministic solves and the number
of truncated off-diagonal matrix-vector products.

3. Time-dependent problem.

3.1. Problem formulation. The time-dependent optimal control problem is

given by

minJ(y,u) = o /OT | [ = dedut) i+ 5 /OT || Pz aute) a

y,u

[ Lewraae (3.)
7



Algorithm 2 hGS preconditioner for the optimal control problem (hGSoc)

The preconditioner Prasoc : (RY, RY, RA) — (VY, VY, VA) is defined as follows.

1: Set the initial solution (VY, VY, VA) to zero and update in the following steps:
2: Solve

] [ Eaen
PV | =| BY-&a-F |, (2.25)
Vi Ry +G -t
where
Y e’ A
C1 = MViyng [ <2:ng>(1>] ) Di=3) AV [heemom]
teT,
U A
&1 = BMVg ) [P 2meo )] Fi =MV, [P @nom)]
=Y U
g1 = Z AtV@:ng) [ht,@rns)(l)] ) Hy = M‘/(Q:ns) [h1,(2:n5)(1)] .
teZ,
3: ford=1,...,p—1do
4; Set £ = (ny+1:n,), where ny = (mﬁdtdfl) and n, = (mfjd).
5: Solve
i ‘:/(é I?;) —Caq+1+ Dat
Pl Ve | =| Rey— &1 —Fan |, (2.26)
V(?) R(z) + Gat1 — Hat1
where
_ Y Y
Cd+1 =M (Vv(lzmg) [ ?1:ng)(€)i| + ‘/(nqul:ng) |:h((xnu+1:n£)(l):|) s
Dast = At Vit [he.amo @] + Vb mg) (et ima@] ) s
tely
U U
Earr = BM (Vi) [1,0m00) + Vil t1mg) [P imoa)] )
A A
Far1 =M (V(Lw) (M1, (1me)0)] + Vin, +1me) [h1,(n,‘,+1;n5)(2)}) ;
gd+1 = Z At (‘7(}1/;7;,5) [ht,(l:nz)(é)] + ‘7()5“.1-1;7%) [ht,(nu-f—l:ng)(é)]) )
tels
U U
Har = M (Vo @] + Viimg) [P s1mo0) ) -
6: end for
subject to
oy(t, x, )
W) 9 (1, €9y(1,%,6)) = ult, . €) in (0,7] < D x @,
y(t,x,€) = g on (0,T] x 9D x P, (3.2)
y(0,%x,£) =yp in D x P.



Algorithm 3 hGS preconditioner for the optimal control problem (hGSoc), cont’d
7 Set £ = (n, +1:ng).

8: Solve
) % Ripy = Cpi1+ Dpi
Pl Vi | = By —&+1—Fpir |,
V([t}) R(e) +Gpr1 — Hpa
where
=Y A
Cpir = MV [Binirio] Dpi1 =) AVt [heinyo]
teZs
Epr1 = BMVT, 3 [P1,muy 0] Fpr1 = Mv(jf;nu) [h1,(1:m0)0)] »
Gpt1 = Z AV [heama@] s Hprr = MV, [ ainaye] -
teT,
9 ford=p—-1,...,1do
10: Set £ = (ng+1:n,), where ng = (médtdl_l) and n, = (m5d+d).
11: Solve (2.26).
12: end for

13: Solve (2.25).

After the application of the stochastic Galerkin finite element discretization to (3.1),
and using the trapezoidal rule for the time discretization, where Ny = T/7 is the
number of time steps over the interval [0, 7] with time-step size 7, we obtain

: _T T 8 1

minJ (y,u) = 5y —ya)” (D@ M,)(y —ya) + 5u” (Do M)u, (3:3)
where M and M., are defined in (2.12), D in (3.7) below, y, yq, and u are vec-
tors corresponding to the state, desired state, and control, respectively, that contain

concatenated vectors y;,yd;, W; € RNwNex1 i — 1 ... N, due to the time-stepping,
Y1 Ydi up
y=1| 1|, va= |, andu=
YN, det un,

After the application of the stochastic Galerkin finite element discretization to (3.2),
and using the implicit Euler method for the time discretization, we obtain

My + 7Ayy = Myg—1 + 7Muy. (3.4)

Combining all time steps of (3.4) in all-at-once discretization ([18, 20]), we can write
Ay —TNu = [Myy, 0, ...,O]T
where
L M
-M L M
At = . . ] N = . ’
-M L M



and

na
L=H & M+71A)+7Y H® A (3.5)
{=2

The matrices A; and N can be constructed using Kronecker product as
Air=In, @ L) — (C M), N=1Iy,® H ® M, (3.6)

where the matrix C' and matrix D, used in (3.3) and also below, are defined as

-1 0 1
2

Forming the Lagrangean and applying the first-order optimality conditions, we get

D@ M, 0 -Al [y T(DRM)- (1N, ® ya)
0 BrDoM TNT| |u| = 0 , (3.8)
—At 7'./\/ 0 A d
where d = [./\/lyo +g g - g], and 1y, € RVe*1 is the column all-ones vector.

3.2. PINT-based block-diagonal hierarchical Gauss-Seidel preconditioner.
In analogy to (2.16), we propose a preconditioner for (3.8) as

D@ M,
PhGsoc-PINT =~ 76D @ M , (3.9)

S

where S is a computationally efficient approximation of the exact Schur complement

Sexact = %At (Do M,) AT + gN(D @ M) NT. (3.10)

As before, the first two blocks correspond to (scaling of) the mass matrix are approx-
imated by Chebyshev semi-iteration from Algorithm 5. Since the iteration entails
matrix-vector multiplications, we note that using (2.19) we have

1 vec (MVi1H,)

vec (MVi2H.,)
(tDRH, @ M)vy =1 i , (3.11)
1 vec (MVin,Hy)
% vec (M‘/QlHl)
vec (M‘/éng)

(BrD® Hy @ M) vy = (1 : , (3.12)

1 vec (M Van, Hi)
where v, and vy are the vectors obtained by concatenating vq; and va, i = 1,..., Vg,

respectively, which correspond to the time steps. The matrices Vy;, Va; € RV»*Ne are
10



then the matricized counterparts of vq; and va;, respectively. Next, since inverting

Sexact 18 computationally prohibitive, we propose an approximation as

T
?N) (Do M,)" (At+7 ”%\/) , (3.13)

= 1
S:T<At+7' B

[N

where using (3.5) and (3.6), we can rewrite Z as

_ nA 1+
Z = INt®<H1 & (M+TA1) +TZH[ ®Az> +7 TIYINt@)Hl@M—C@Hl@M.
£=2
B (3.14)
By dropping the last term C' ® Hy ® M, we further approximate Z by

2:INt®{H1® |:(1—|—7'1/1_;7)M—|—TA1:| —&—TZH@@A@}, (3.15)

=2

which is symmetric. The idea is to use S ~ Z (D® /\/17)71 Z, and in particular the
solves with Z are approximated by Algorithm 1, similarly to the steady-state case.
We remark that by dropping all terms with ¢ > 2 from Z in (3.15), that is considering

. I+
Zolet®H1®|:(1+T ﬁ’y)M—FTAl:l,

we recover the mean-based preconditioner [5]. Since the application of Algorithm 1
entails matrix-vector multiplications, using (2.19) we formulate Zvg as

N
- 1+
Zvg = <1Nf®{H1® l:(1+T BrY)M+TA1:| +7 H€®AZ}> V3
=2
Zn: vec AnglHZ
iAl A (3.16)
B Yool vec (AVaa Hy
42y vec (AeVsNtHZ)
where

AZZ{(l—FTﬁ)M-FTAl, 0=1,

TA@, 622,...,7114,

and Vi; € RN»XNe ig the matricized form of the i-th block of vg, with i =1,..., N,.

The practical implementation of the preconditioner for the time-dependent system
leverages the inherent structure of the all-at-once formulation. As defined in (3.15),
the core operator of the Schur complement preconditioner, Z, is block-diagonal with
respect to the time steps. This structure extends to the entire KKT system, which
then makes the preconditioning easily parallelizable. Specifically, an application of the
preconditioner Ppasoc.pINT entails an application of the steady-state optimal control

11



preconditioner Phasoc from Algorithm 2—-3 to all time steps simultaneously, and so it
represents parallel-in-time (PINT) approach. It is summarized as Algorithm 4.

Algorithm 4 Parallel-in-time hGSoc preconditioner (hGSoc-PINT)
The preconditioner PhgsoepinT : R — V is defined as:

1: for k=1,...,N; do

2 Extract (RY, R, RY). (the subvector k of R)
3: Calculate (V,Y, VU, VA) = Prgsoc(RY , RY, RY) (apply Algorithm 2-3)
4: end for

5: Concatenate {(V;Y, VU, VA)}, into V.

4. Spectral analysis (time-dependent case). Since the steady-state optimal
control problem can be viewed as a special case of the time-dependent formulation
(with Ny = 1), we focus on analyzing the time-dependent setting; the steady-state
results then follow as a direct consequence. The all-at-once discretization, presented
in Section 3.1, couples all time steps simultaneously, yielding a significantly larger
KKT system than its steady-state counterpart. Our goal is to prove that the pro-
posed parallel-in-time preconditioner, based on the hGSoc-PINT in Algorithm 4, is
spectrally equivalent to the ideal (but computationally inexpensive) preconditioner.

We begin by recalling the notion of spectral equivalence, which serves as the
foundation for our analysis.

DEFINITION 4.1 (Spectral Equivalence). Two matrices A and B are said to be
spectrally equivalent, denoted A ~ B, if there exist positive constants a < b, such that

avT Bv < vI Av < bvT Bv

holds for all non-zero vectors v. FEquivalently, all eigenvalues of the preconditioned
matriz B~1A are contained within the fized interval, which means \(B~1A) C [a, b].
Our proof proceeds by establishing a chain of spectral equivalences among the follow-
ing operators:

Sexact ~S~S~ Sr ~ ShGS-PINT~

Here, Sexact denotes the exact Schur complement (3.10), S is an approximation of
Soxact defined in (3.13), and S is a block-diagonal approximation obtained by replacing
Z in (3.13) with Z from (3.15), which eliminates time-coupling terms and enables

parallel-in-time computation. The operator S, represents the truncated hierarchical
preconditioner

S = Z.(DeoM,) 2, 2 = INt®{H1® [(1+T,/1+7W)M+TA1] +TZHZ®AZ},

=2

with 7 =1,...,n4. When r =1, S, reduces to the mean-based preconditioner em-
ployed in [5], and when r = ny, it recovers the full operator S. Finally, Shas.piNT =
Z’hgs_pINT (D ®M7)’12~’}?GS_PINT represents the computationally feasible approxima-
tion of S, in which the linear systems Z,x = b are solved approximately via the
hierarchical Gauss-Seidel method (Algorithm 1), as implemented in the parallel-in-
time framework of Algorithm 4.

To establish the spectral equivalences in this chain, we require several technical
results. We begin with two auxiliary lemmas concerning matrix perturbations and
congruence transformations, which will serve as building blocks for the main theorems.
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LEMMA 4.2. Let A and A, be symmetric positive definite matrices satisfying
(1—e1)A =2 A, 2 (1+¢2)A in the Loewner order for some 0 < 1,62 < 1. Let B be a
symmetric positive semidefinite matrix. Then, the eigenvalues of the preconditioned
matriz (A + B)"Y(A, + B) are bounded as follows:

1—e1 <AN(A+B) ' (A4 + B)) <1+es.

Proof. The eigenvalues A are given by the generalized eigenvalue problem (A, +
B)v = M A + B)v. By the Courant-Fischer theorem, these eigenvalues are bounded
by the range of the corresponding Rayleigh quotient. For any non-zero vector v, let
a=vIAv >0 and b= vl Bv > 0. The assumption (1 —e1)A < A, < (1 +&)A
implies that

(1—e1)a<viA,v < (1 +¢&9)a.
We can now bound the Rayleigh quotient:

vIi(A, +B)v _ vIAv+b
vI(A+B)v  a+b

A((A+B)" (A, + B)) =

Applying the bounds for v A, v, we get

(1—51)a+b</\< (1+82)a+b.
a+b - a+b

Simplifying the lower and upper bounds yields

a a
<)A<1 .
a+b— — +52a+b

1—61

Let ¢ := ;43. Since a > 0, b > 0, it follows that 0 < ¢ < 1. Thus, for any vector v # 0,
the corresponding value of the Rayleigh quotient lies in the interval [1 —e1¢, 1 + €a¢].
Because 0 < ¢ < 1, this interval is always contained within the larger, fixed interval
[l — 1,1 + e2]. Therefore, all eigenvalues are bounded by 1 —¢; and 14 ¢€5. O

LEMMA 4.3 (Eigenvalues under Congruence Transformation). Let C' and D be
symmetric positive definite matrices, and let Q be a nonsingular matriz. The eigenval-
ues of the pair (C, D) are identical to those of the transformed pair (QTCQ, QT DQ).

Proof. Let (A, x) be an eigenpair satisfying the generalized eigenvalue problem
Cx = ADx, with eigenvector x # 0. We perform a change of variables by setting
x = Qy. Since @ is nonsingular, x # 0 implies that the transformed vector y # 0.
Substituting x = Qy into the original problem gives:

C(Qy) = AD(Qy).

Multiplying from the left by QT, we obtain:

(QTCQ)y = MQTDQ)y.

This final expression is the generalized eigenvalue problem for the pair (QTCQ, QT DQ),
which is satisfied by the same eigenvalue A with the transformed eigenvector y. There-
fore, the sets of eigenvalues for both pairs are identical. O

With these auxiliary results in place, we now proceed to establish the spectral
equivalences in the chain Sexact ~ S ~ S ~ S, ~ Shas.pint. We begin by proving the

13



first equivalence, S ~ Sexact, which shows that our factorized approximation (3.13) is
spectrally close to the exact Schur complement.

THEOREM 4.4 (Theorems 4, 6 in [5]). Let Sczact be the exact Schur complement
and S be its approzimation as defined in (3.13) for the steady-state case or (3.9) for
the time-dependent case. For any o > 0 satisfying the condition below, the eigenvalues
of S8 zact are bounded as

ANE 18 maet) C {2(114-04) 1) . (4.1)

The condition on « satisfies

H(At) -1

o< <V“<A)“> 1 (42)

Next, we show the relationship between S and the matrix S = Z(D @ M)~ 27
defined in (3.15). To do this, we first introduce a standard lemma concerning singular
value perturbation.

LEMMA 4.5. For any matrices A and B of the same dimensions,

Umin(A + B) 2 Umin(B) - ||A||2

Here, omin(+) denotes the smallest singular value of its matrix argument.
Proof. From the triangle inequality, for any vector x, with ||z|2 = 1, we have

I(A+ B)z|2 = [|Bx — (=A)x[lz = [| Bz(|2 — | Az]]2.
Taking the minimum over all unit vectors x on both sides of the inequality, we get

min [|(A+ B)zllz 2 min (||Bzlz - [lAz]l2).

[[x]l2=1 llzll2=
Using the property that min(f — ¢) > min(f) — max(g), we obtain

min (||Bz|2 — ||Az||2) > min ||Bz|2 — max | Az||s.
l|lz|l2=1 l|lz|l2=1 lz]l2=1

By the definitions of the minimum singular value and the operator norm, the above
expression is equivalent to omin(A + B) > omin(B) — ||Al|2. O

LEMMA 4.6. Let W = (D ® M,)™!, and assume that there exists a constant
u > 1 such that

T,/”T”ammww%) > 1l (A + C @ MW . (4.3)

Then the minimum eigenvalue of S has the following lower bound

2

~ T 1 1

Anin(S) > = (1= =) o2, (M?2).
(8) B < u) ()

Proof. From the definition of S and the properties of the minimum eigenvalue,

Amin(S) = Amin(EW ZT) = 02, (ZW 7).

min
14



Since ZWz2 =7 %NW% +(A+C® M)W%, applying Lemma 4.5 yields

~ 1
i (W) > 7, /%amm(/\/wé) ~ (A + C @ M)W H .
We assume there exists a constant p > 1 such that

1+~
B

Using the assumption (4.3), we obtain!

Omin(EW?) 2 (1 - ;) T\/Tamin(/\/wé).

Consequently, the lower bound for )\min(S‘) is:

Amin(S) > <1 — i)z (T\/?fafmnww%).

Next, observe that

TminNW ) > pil[(A; + C @ M)W |5

o2 NWE) = o2, (I, @ M)(D™% & M5 )
=02 ((In,D7H) & (MM )
= 02 (D7) - 0%, (MM 2.
It is easy to verify that O'min(D_%) =1 and
02 (MM5 %) = 2 ((Hy @ M)(Hy @ M~3))

®
= o2 (HLHy ) @ (MM %))

1
= Jr2nin(M )
1+~
Thus, we have
2 3 L 5 3
oo (NW?2) = o2 (M?2).
IIlln( ) 1_*_,y mlIl( )

Substituting this into the expression for the lower bound of Apin(S), we finally get

Amin(8) = (1 - i)z 72(1; 7) <1iw"f2m“(Mé)> =3 (1 - i)Qofmn(Mél
(4.4)

We can now state the following result.
THEOREM 4.7. Assume that the conditions of Lemma 4.6 hold. Then, the the
eigenvalues \(S™1S) satisfy

(1-0)2 <ANS7I1S) < (1+6)?,

1In our experience, this condition is often satisfied numerically when 7 >> v/B.
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where 0 is the perturbation parameter, with

3 T V/ .
0 == sup (L (C1®~M) vl < 25 K(M?).
vA0  [[W2ETv], m(l - 5) T

Proof. By the definition of # and the triangle inequality, for any v # 0, we have
[WEZTv]2 — W3 (C @ M| < [WEZTv2 < [W2ZTV 2 H|W 3 (COM)TVo.
Using the bound |[W2(C' ® M)Tv|ly < 8|W 2 Z7v||5, we obtain
(L= 0)[W2Tv]ls < [WEZTV]|> < (1+0)[W2 2T,
Squaring these inequalities leads to the spectral bounds
(1-60)2<ANS71S) < (1+6)%
Next, it remains to analyze the upper bound of 6. To this end, observe that

) v ; g
o IWEHCE MV W e M),

0 _ < b
VA0 |[W2ZTv|, Omin (W2 ZT)

b

from which we bound the numerator and the denominator separately. First, for the
numerator

W2 (CoM)T|,=[I(D”% @ M5y ) (CT @ MT)||;
= [(D72CT) & (M5 2 MT)||2
= D727 ||y - M52 MT .

. . . 1 -3 1
Also, note that simple calculation yields |[D~2CT ||y - M5 > MT||; < \/\1/%|\M2 ll2,

so that the numerator satisfies

V2
Vi

For the denominator, using the result from the previous lemma, we have

IW2(CoM)T|, < 1M .

[N

amm<wééT)—amm<éW%>z<11) " rmin(MP).

w) VBT
Combining the bounds for the numerator and denominator,

) - (| M35

B (1 - ﬁ) ﬁUmin(M%)
VB omaM

B 1 —+ (1 — i) T Umin(M

- )

1+ (1*/%)7’
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thereby completing the proof of the theorem. O
Note that the bound on @ implies that, for sufficiently large 7 (e.g., 7 > /B k(M)/?),
we have § < 1; hence S and § are spectrally close. In practice, £(M) can be kept O(1)
via appropriate basis choices and mass lumping, so it suffices to require 7 > /5.
Next, we prove the spectral equivalence between S and its truncated form S,.
First, note from [6, Theorem 3.8], that

(1—¢) (ZAH4®Ae><ZHe®Ae (1+4e9) (ZHZ®AZ>

(=1 {=1

where €1, &5 indicate the importance of the truncated residual; the more terms to
be calculated, the smaller €1,e2 we have, the tighter the preconditioned spectrum is
clustered around unity, and the more accurate and the better preconditioner we have.
Applying Lemma 4.2, and H; ® M = 0, we know that

(1—e)Z=<Z,2(1+e)Z.
From Lemma 4.3, we know that the generalized spectra of (Sr, 5) and
((W%Z;,«W%)Q, (W%EW%)Q) coincide. Therefore we get
(1-e1)2<ANS7IS) < (1+e2)2

This establishes the spectral equivalence of Sy and S.

Finally, we proceed to establish the spectral equivalence between the truncated
preconditioner S, and the hierarchical symmetric block Gauss-Seidel approximation
Shaspint. To this end, following the idea from [6], we can rewrite it as Hy, =
Ly + LZT, {=2,3,...,n4, and matrices L, have at most one nonzero entry per row

and per column.
1+
X1 =1Iy, ® <H1 ® (1+ 74 /TV)M + TA1>

Now, define
X,=1In,® (ZL£®A5> ,r=2,3,...14

so we know Zynas.pint = (X1 4+ X)X H(X1 4+ XT) = Z, 4+ X, X7 ' X7, the Rayleigh
quotient

VI Zuas PNtV _ vIX XXy
VTZTV o VT(X1 + X, —‘y—X?)V
¢
Let u= Xlév; then
u’YyTu
((w) =

u'(I+Y +Y7)u

_1 _1
where Y = X, ? X, X, 2 = Iy, ® (3,5 Le ®2y), and

—)M + A1>—; Ay ((I +

17
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Hence,

¢(u) < max w - max u'u = Tina(¥) . (4.5)
w0 ulu w0 W (I+Y+YT)u Apn(I+Y +Y7)

The following result holds.
LEMMA 4.8. Define

A= Y | Hillzpe,  pe o= [ello,
=2
where
A = ((I+T,/1+T'*)M+TA1)_% A ((I-I-T\/H_T'Y)M-‘FTAl)_%.
Let

T T
Y = X;1/2X7.X;1/2 = INi@(ZI%@QIZ)’ E = Y—|—YT = I]\Q@(ZH@@Q[[),
=2 =2

with Hy = Ly + LZ. Then

1VBe el =)

kmin

Amin([4Y+Y ) > 1-Ar, omax(Y) < ) | Lellape < Ay, and py <
(=2

where omax () denotes the largest singular values.
Proof. Using

T
I4y 4yl = Xf1/2 (X1 I ZHé ®A4)Xf1/2 _ Xfl/Q z, Xf1/2,
=2

the spectrum of I +Y + YT coincides with the generalized spectrum of the pair
(Z,,X1). Since E is symmetric, Amin(I + E) > 1 — || E||2. By the Kronecker product
norm rule and the triangle inequality,

1Bl = | Iv, © (O He@ )| < 7 I1Hell2 120l = Y 1 Hllz pe = A,
(=2 (=2 (=2

which yields Apin(I +Y +YT) > 1 - A,.
Similarly,

T T
¥l = 2w @ 3 Le@ e < D 1Lell2 e
=2 =2

Since Hy = Lg + L; and each L, has at most one nonzero per row and per column,
we have || Ly||2 < ||H¢ll2. Hence opmax(Y) = [|Y]2 < A,
For the explicit bound on py, recall that py = ||2||2 is the maximum eigenvalue of

the generalized eigenvalue problem A,v = AKv, where K = (I + 74/ H'T”) M+ TA;.
18



In terms of the associated finite element function vy, the Rayleigh quotient is given
by

2
vT Ay /Qaz|Vvh| dx

vIKv _/( 1+ 2 2 '
(L4 7/ 5 onl? + 7ao [Ven[?) de
o B

Since the mass term is non-negative, we can bound this ratio by neglecting the L?-term

in the denominator:
ag |V |? dz
VTA(V < /Q €| h| < lHN/QZfWHLO"(Q)

- <
v Kv T Kmi
T/ao\Vthdx o

Q

)

and taking the supremum gives the stated bound on pg; substituting it into [|Y||2
yields the last inequality. O
Observe from above that, with A, < 1,

vYYTv a2, (Y) A2
(v) = o= Ny = S :
viI+Y+YT)v Amin(I +Y +YT) 1—A,
Consequently,
T 2
V' ZpGS—PINTV A

1 < —— <1 .

- vIiZ.wv =0t 1—-A,

From Lemma 4.3, we know that the generalized spectra of (ShGS_pINT, ST) and
((W%Zhgs_PINTW%)Q, (W%Z;TW%)2> coincide. Therefore we get

A2

1< MS7LS aa <(1 2,
< XS, Shas-pint) < (14 17Ar)

COROLLARY 4.9 (Steady-State Case). Since the steady-state optimal control
problem corresponds to the special case Ny = 1 of the time-dependent formulation,
all preceding results apply directly with the simplified notation. The spectral equiva-
lence chain for the steady-state Schur complement preconditioner is

Sexact ~S~ Sr ~ ShGSa

where Sezact 18 defined in (2.17), S in (2.18), and

Sy =ZM1Z], Z. =S H/® A,

with A; = Ay + ,/H'T'YM and Ay = Ay fort=2,...,r. Whenr =1, S, reduces to the
mean-based preconditioner, and when r = n 4, it recovers the full operator S. Finally,
Shas represents the computationally feasible approximation of S, in which the linear
systems Z,.x = b are solved approximately via the hierarchical Gauss-Seidel method
(Algorithm 1), as implemented in Algorithm 2-3.
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5. Numerical experiments. This section validates the theoretical findings of
Sections 2—-3 through comprehensive numerical experiments. We pursue two primary
objectives: (i) verifying the mesh-independence and spectral bounds established in
the preceding sections, and (ii) demonstrating the computational efficiency of the
proposed hierarchical Gauss-Seidel (hGS) preconditioner across varying truncation
strategies. Experiments are presented for both steady-state problems (Section 5.1)
and time-dependent problems (Section 5.2). The numerical experiments were per-
formed on a system running AlmalLinux-9 with 40GB RAM, and the proposed algo-
rithms were implemented using MATLAB 23.2.

The random input k is characterized by the covariance function (2.2)—(2.3),

Cuto) = ofexp (220 22l ) ey e o
4 lo

where oy is the variance coefficient, determining the randomness of the input. In
our simulations, we set the correlation lengths as /1 = 5 = 1 and the mean of the
data as E[k] = 1. For gPC setting in (2.9), we consider the case of the log-normal
distribution with Hermite polynomials. This problem has been extensively studied
in [19]. Also, we used v = 1 in both cases, which means we only consider the case
with standard deviation. To discretize the spatial domain, we implemented our code
based on IFISS 3.7 [23], using Q; approximation. For temporal discretization, we
apply the all-at-once technique proposed in [20] and set the terminal time as 7' = 1.
In all numerical experiments, the spatial mesh size h and the time step 7 are chosen
as 27% with i = 4,5,6,7. We solve the linear systems (2.15) and (3.8) using the
preconditioners given by (2.16) and (3.9), respectively, employing the flexible GMRES
method (without restarting) [22]. The stopping criterion is defined in terms of the
relative residual ||ry||/||b]|, with thresholds 10~® for the steady-state experiments and
1076 or 10~ for the time-dependent runs, where r;, denotes the residual at iteration
k and b is the right-hand side vector. To assess the effectiveness of the hierarchical
preconditioning strategy, we systematically compare three truncation settings for the
(3,3)-block preconditioner: n, = 1 (mean-based approximation), n, = mg¢ + 1 (hGS
truncated at the first-order stochastic terms), and n, = ny (full expansion retaining
all ¢;j1 coefficients). Both iteration counts and computational times (in seconds) are
reported for each configuration. To verify the efficiency of the hierarchical Gauss-
Seidel method, we compare both iteration counts and computational costs under
different truncation settings: n, =1, m¢ + 1, and ne.

We consider homogeneous Dirichlet conditions, corresponding to Example 2 in [9,
Chapter 5]. This example is defined on a square domain Qg with a discontinuous
target function and inconsistent boundary data

{1 in Q = [~1,0]2,
Yd =

We subsequently present numerical experiments for both steady-state and time-dependent
problems to illustrate and verify the efficiency of our proposed hGS method.

Here are some details about the implementation for preconditioners (2.16), (3.9).
Since time-dependent problems can be seen as a series of steady-state problems, and
also because of the diagonal structure of matrix D and matrix I,, we can just focus
on the steady-state preconditioner.

The practical implementation of the preconditioner P in (2.16) involves differ-
ent strategies for its constituent blocks. For the (1,1) and (2,2) blocks, which are
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based on Kronecker products involving the mass matrix M, applying their inverses
requires solving linear systems with M. These solves are handled efficiently by either
a direct Cholesky decomposition or the iterative Chebyshev semi-iteration method
(Algorithm 5) [11, 29].

For the more complex (3,3) block, which represents the approximate Schur com-
plement S, we employ an outer iterative scheme. Specifically, we use the Precondi-
tioned Richardson method, outlined in Algorithm 6 [7, Chapter 7], where the core of
our proposald the hierarchical Gauss-Seidel (hGS) method from Algorithm 1 serves
as the preconditioner for each Richardson step.

Algorithm 5 Chebyshev semi-iteration for mass matrix preconditioning [11, 29]

Given mass matrix M, vectors b, 2(?) = 0, (1) = 0, and parameter wy = 1.

Set Amin = 1/4, and Apax = 9/4

Calculate v = (Amin + Amax)/2 and p = (Amax — Amin)/(Amax + Amin)-

Set D = - diag(M). (a diagonal matrix)
for k=0,1,...,N—1do

wka

@

We+1 :1/ 1—

rk) = b — M)
. pk) = D=1p(k)
9: p+l) — Wt - (p(k) 4+ ) — z(kfl)) + (k=1
10: end for
11: Return z = (V).

Algorithm 6 Preconditioned Richardson iteration with hGS preconditioner

1: Given matrix Z, vector b, and initial guess z(1).

9. ¢ = p— Z, 1) (initial residual)
3. for k=1,2,...,N do

4 Solve Zz(k) — p(k). (apply Algorithm 1)
5. 2+ = (k) 1 (k) (update solution)
6 pltl) — p — Zp+l), (update residual)
7: end for

8: Return z(V+1)

5.1. Steady-state case. This subsection focuses on the steady-state optimal
control problem (2.5). We examine the performance of the proposed preconditioner (2.16)
under systematic variations in: (i) the variance coefficient oy (Tables 5.1-5.3), (ii) the
regularization parameter S (Table 5.4), and (iii) the spatial and stochastic discretiza-
tion levels. For each configuration, we compare three solvers for the (1,1) and (2,2)
blocks—Chebyshev semi-iteration with 5 or 10 steps (Algorithm 5) and direct Cholesky
factorization—combined with the three truncation strategies for the (3,3)-block de-
scribed above. For the (3,3)-block, we apply the Richardson iteration (Algorithm 6)
with N =1, i.e., one application of the hGS preconditioner per outer GMRES itera-
tion. All tests use a fixed tolerance of 1075,

Next, by fixing the parameter 8, we perform further tests summarized in Ta-
bles (5.1-5.3), employing different step settings for the Chebyshev smoother and the
Cholesky decomposition for blocks (1,1) and (2,2), as well as various truncation strate-
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TABLE 5.1
Simulation results showing the total number of iterations from low-rank preconditioned GMRES
and the total CPU times (in seconds) using preconditioner with 8 = 1074, o = 0.01, and selected
spatial (Ny) and stochastic (N¢) degrees of freedom

‘ # iter(t) # iter(t) # iter(t) # iter(t)
Ne " 1289(h = &) 1089(h = 55) 4225(h = 35) 16641(h = )
n, [T me+1 na [T me+1 n4 1 me+1 n4 1 me+1 ny
o, =0.01

Chebyshev-5+hGS-1

(3.3) 20]32(5.7)  32(4.0) 32(5.0) |36(9.2) 35(10.0) 35(15.6) |36(23.2) 27(26.9)  27(46.5) |35(173.4) 33(144.9) 27(194.8)
(4,4) 70| 32(129.1) 32(129.5) 32(182.9) | 36(243.4) 35(239.1) 35(409.2) | 36(752.3) 34(724.9) 34(1237.8) | 35(2585.4) 33(2524.6) 33(5253.9)
(6,3) 84| 32(317.5) 32(318.3) 32(403.0) | 36(508.9) 35(498.2) 35(601.3) | 36(1059.3) 34(864.8) 34(1632.5) | 35(3099.0) 33(3798.1) 33(5630.2)

Chebyshev-10+hGS-1

(33)20[26(28)  26(2.6) 26(4.4) [30(6.9) 29(7.1) 29(12.0) [31(20.2) 31(21.1) 31(37.6) |32(145.1) 31(130.3) 31(154.5)
(4,4) 70| 26(111.7) 26(112.2) 26(153.7) | 30(191.6) 29(189.0) 29(323.8) [32(550.7) 31(383.1) 31(830.2) |33(1745.9) 31(2273.0) 31(3341.3)
(6,3) 84| 26(263.9) 26(266.1) 26(329.2) | 30(457.7) 29(432.2) 29(504.1) [ 32(959.1) 31(800.4) 31(1515.3) | 33(3015.1) 31(3643.9) 31(5318.7)

Cholesky+hGS-1

(3,3)20[25(3.5) 2
(4,4) 70| 25(104.2) 2
(6,3) 84| 25(245.4) 2

5(4.0) 25(4.3) |20(7.4) 27(6.7)  27(10.9) |29(19.1) 29(26.5)  29(44.5) |31(143.6) 20(162.7) 29(182.9)
5(107.6) 25(144.3) | 20(177.3) 27(168.9) 27(283.9) |29(419.0) 20(480.8) 29(937.1) [31(2390.7) 29(2046.0) 29(3299.9)
5(247.4) 25(316.8) | 20(429.9) 27(393.6) 27(675.5) |29(831.9) 29(1008.3) 29(1756.8) | 31(3563.3) 29(3393.6) 29(6436.3)

TABLE 5.2
Simulation results showing the total number of iterations from low-rank preconditioned GMRES
and the total CPU times (in seconds) using preconditioner with 8 = 1074, o = 0.1, and selected
spatial (Ny) and stochastic (N¢) degrees of freedom

# iter(t) # iter(t) # iter(t) # iter(t)
Ne N 289(h = 3r) 1089(h = 35) 4225(h = 35) 16641(h = 5-)
n, ‘ 1 me+1 na ‘ 1 me+1 na ‘ 1 me+1 na ‘ 1 me+1 na
o, =0.1

Chebyshev-5-+hGS-1

(33) 20]39(3.6) _33(3.3) 33(3.7) |35(11.1) B35(8.7) 29(14.2) |34(20.7)  36(40.6)  35(42.3) [34(162.3) 28(84.0) 34(191.2)
(4,4) 70 [41(199.9) 34(173.7) 33(136.4) | 45(218.5) 35(190.5) 35(299.8) | 46(841.0) 36(670.3) 35(903.4) |45(2093.8) 35(2917.1) 34(4099.5)
(6,3) 84| 41(460.9) 34(238.3) 33(325.3) | 45(475.0) 35(520.5) 35(610.9) |44(1332.7) 36(1028.1) 35(1708.7) | 44(4940.4) 35(4008.7) 34(5843.5)
Chebyshev-10+hGS-1
(33) 20[34(2.8)  26(22) 26(3.1) [38(7.1) 30(7.0) 30(10.5) |40(25.7)  B31(32.8) 31(37.8) |42(108.7) 31(86.2)  31(152.0)
(4,4) 70 | 36(191.4) 26(139.4) 26(114.9) | 40(186.6) 30(234.7) 30(264.6) |42(488.8) 31(518.1) 31(894.2) |44(1746.1) 32(1518.3) 31(3608.8)
(6,3) 84 |35(411.8) 26(193.3) 26(283.1) | 40(436.9) 30(354.9) 30(558.3) |42(1221.2) 31(970.6) 31(1529.2) | 43(4988.0) 32(3801.3) 31(5417.9)
Cholesky+hGS-1
(3,3) 20[33(2.6) 25(2.2) 25(3.2) |[37(7.9) 27(6.9) 27(11.1) |39(28.4)  29(34.0) 29(34.8) [39(129.7) 29(103.2) 29(150.1)

(4,4) 70 | 35(177.5) 25(127.6) 25(177.2) | 39(282.8) 29(216.6) 27(320.4) |41(603.6) 29(581.4) 29(818.1) |41(1928.1) 20(1582.8) 29(3003.8)
(6,3) 84 | 35(401.1) 25(332.4) 25(407.1) | 39(657.8) 29(445.5) 27(665.0) |41(1156.5) 29(869.2) 29(1706.1) | 41(4696.6) 29(2848.4) 29(22402.2)

gies for block (3,3) within the hGS method. The numerical experiments were con-
ducted using multiple mesh sizes and stochastic parameter configurations, with a
solver tolerance set to 1075,

Tables 5.1-5.3 present results for 3 = 1074 with oy € {0.01,0.1,0.4}, covering
a range from near-deterministic to highly stochastic regimes. Tables 5.1-5.3 demon-
strate three key theoretical properties. First, regarding mesh independence, iteration
counts grow sub-linearly with spatial refinement for fixed stochastic dimension N,
consistent with the spectral bounds established in Section 2. Second, concerning trun-
cation efficiency, the n, = me + 1 strategy achieves iteration counts comparable to
the full expansion (n, = n4) while avoiding the computational overhead of summing
over all ¢;;;, coefficients, thereby validating the hierarchical approximation framework.
Third, regarding smoother comparison, the 5-step Chebyshev semi-iteration balances
convergence rate and per-iteration cost more effectively than either the 10-step variant
or direct Cholesky factorization. Across all configurations, the n, = m¢+1 truncation
consistently delivers performance intermediate between the mean-based approxima-
tion (n, = 1) and the full expansion, confirming the practical value of the proposed
hierarchical preconditioning strategy.

Table 5.4 examines the sensitivity to the regularization parameter 3, which bal-
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TABLE 5.3
Simulation results showing the total number of iterations from low-rank preconditioned GMRES
and the total CPU times (in seconds) using preconditioner with B = 10™% | o = 0.4, and selected
spatial (Ny) and stochastic (N¢) degrees of freedom

[ # iter(t) # iter(t) # iter(t) # iter(t)
NV ago(h = &) 1089(h = ) 1225(h = L) 16641(h = )
Ny ‘ 1 me+1 na ‘ 1 me+1 na ‘ 1 me+1 na ‘ 1 me+1 na
o, =04

Chebyshev-5+hGS-1

(3,3) 20 | 59(5.7) 36(3.6)  27(4.5) [84(13.3)  39(10.1) 29(13.2) |88(50.9) 38(37.8)  36(60.4) |[88(398.2)  38(163.3) 28(203.0)
(4,4) 70| 100(275.7) 38(198.3) 34(140.1) | 112(498.4) 42(299.3) 37(316.8) | 118(1792.6) 41(697.2) 36(929.6) |117(7712.6) 41(2655.2) 36(3742.7)
(6,3) 84|86(720.2)  36(414.0) 34(463.0) | 96(986.0) 40(596.4) 37(624.8) | 102(3051.9) 40(1452.6) 37(1838.1) | 102(9946.2) 41(4576.9) 36(7289.7)
Chebyshev-10+hGS-1
(3,3) 20[69(6.4)  30(2.8) 28(3.3) |77(13.9) 33(3.2) 30(9.9) |81(50.5) 35 31(38.1) | S3(208.6)  36(143.7) 33(162.3)
(4,4) 70| 92(278.4)  32(96.5) 28(125.9) | 105(508.4) 36(175.3) 30(269.3) | 110(1318.5) 37(781.9) 32(857.9) |110(5212.5) 38(2920.1) 33(4546.2)
(6,3) 84| 79(931.3)  30(355.0) 28(411.9) | 89(1373.9) 34(529.2) 30(531.0) | 95(3528.4) 36 1576.4) | 97(11001.9) 38(4413.7) 33(5769.8)
Cholesky+hGS-1
(3,3) 20| 69(6.8) 29(3.0) 27(4.0) [77(17.5) 31(82) 29(11.7) [81(57.5) 33(35.2)  29(50.3) [83(279.8)  33(180.9) 31(181.8)
(4,4) 70| 31(159.1)  31(156.3) 29(350.5) | 105(730.2) 33(238.6) 29(331.6) | 109(1903.1) 35(726.1) 31(953.3) |109(7600.0) 35(2737.8) 31(3350.7)
(6,3) 84 |33(753.1)  33(353.2) 27(425.5) | 89(1325.8) 33(493.8) 29(634.8) | 95(3122.6) 35(1055.9) 31(1837.7) | 97(10923.5) 35(4023.8) 31(6429.3)

ances the tracking term and control cost in the objective functional (2.5). As j
decreases from 1072 to 10~°, the optimization problem becomes increasingly domi-
nated by the tracking term. The iteration counts remain remarkably stable across this
range, demonstrating that the hierarchical preconditioner effectively handles varying
parameter regimes without requiring problem-specific tuning. The n, = m¢ + 1
truncation consistently performs comparably to the full expansion while maintaining
reduced computational cost.

TABLE 5.4
Simulation results wusing the preconditioner with mg=3 p=8, o = 02, B €
{1072,1073,107%,107°} and Nj, = 1089(h = 55).

\ # iter(t) # iter(t) # iter(t)
Ne [(3,3) 20 (4,4) 70 (6,3) 84
nr ‘ 1 me+1l  ngy ‘ 1 me+1 naA ‘ 1 me+1 na
Chebyshev-5+hGS-1
B =10"2]52(10.0) 32(7.9) 30(13.5) [ 60(272.3) 32(149.2) 30(363.0) | 56(596.9) 32(338.9) 30(626.9)
B =1073152(10.3) 34(8.3) 34(15.5) | 60(273.8) 35(161.7) 34(411.4) | 56(594.0) 34(360.7) 34(709.7)
B =10"1143(11.7) 37(7.6) 35(15.6) | 62(279.7) 37(172.1) 35(299.2) | 58(629.0) 37(393.4) 35(731.8)
B =1075[41(11.2) 38(7.9) 37(17.0) | 60(270.6) 38(175.9) 37(317.9) | 56(589.0) 38(413.3) 38(795.5)
Chebyshev-10+hGS-1
B=10"2148(8.7) 30(6.1) 29(11.9) [56(420.8) 29(147.9) 29(359.7) [ 52(577.6) 34(370.8) 24(653.1)
B =10"3148(8.8) 31(6.4) 30(12.6) | 56(432.3) 31(151.6) 30(406.9) | 52(554.8) 31(339.6) 30(675.8)
B =10"%148(8.8) 30(7.1) 30(19.4) | 56(419.0) 31(151.2) 30(390.6) | 52(575.0) 31(339.6) 30(676.1)
B =1075147(8.7) 30(7.0) 30(13.2) | 54(406.4) 30(146.0) 30(383.9) | 51(554.0) 30(333.0) 30(675.1)
Chol+hGS-1
B =10"2147(12.4) 29(6.9) 27(11.9) [55(380.1) 29(214.4) 27(354.4) [51(975.8) 29(483.9) 27(595.1)
B =1073147(12.0) 29(6.4) 27(11.9) | 55(396.0) 29(215.9) 27(364.5) | 51(876.9) 29(455.6) 27(596.0)
B =10"%147(10.4) 29(7.4) 27(12.2) | 55(387.9) 29(216.0) 27(343.9) | 53(847.9) 29(432.8) 27(595.5)
B =1075145(10.0) 29(6.8) 27(12.0) | 53(369.6) 29(205.5) 27(359.3) | 51(829.3) 29(438.9) 27(594.1)

5.2. Time-dependent case. This subsection evaluates the all-at-once precon-
ditioner (3.9) for time-dependent optimal control problems. The discretization results
in KKT systems of dimension Ny X N¢ X Ny, where IV; denotes the number of time
steps. We investigate the scalability with respect to: (i) mesh refinement (Table 5.5),
(ii) regularization parameter 8 (Table 5.6), (iii) variance coefficient oy (Table 5.7),
(iv) temporal discretization 7 (Table 5.8), and (v) stochastic dimension (mg,p) (Ta-
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ble 5.9). Based on the steady-state findings, we employ the Chebyshev-5+hGS-1
configuration unless otherwise noted, reporting results for both strict (107%) and
moderate (10~%4) tolerances to illustrate practical convergence behavior. As in the
steady-state case, we use N = 1 in the Richardson iteration (Algorithm 6) for the
(3,3)-block.

From our observations in the steady-state problem, a combination of a 5-step
Chebyshev smoother with one step of our hGS method achieves a good balance be-
tween the computational cost of matrix operations and GMRES iterations; thus, we
typically adopt this combination when testing time-dependent cases as well.

As indicated in Table 5.5, the 5-step Chebyshev smoother yields consistent itera-
tion counts compared to either the 10-step smoother or direct Cholesky decomposition.
As the spatial discretization is refined from nc = 3 to nc = 6, representing a growth
from 116,640 to 6,084,000 DoF', the iteration count for n, = me+1 exhibits sub-linear
growth consistent with the near mesh-independence predicted by the spectral theory
in Section 3. The n, = m¢ + 1 truncation achieves iteration counts comparable to
the full expansion (n, = na4) while reducing the cost of assembling and applying
the (3,3)-block preconditioner—a trade-off that becomes increasingly favorable as the
problem dimension grows.

TABLE 5.5
Simulation results using hGS Method with different truncation settings na with the model with
time-dependent diffusion constraint for different tolerance and mesh size at the random setting with
me=3, p=3 0x=0.2, B = 10~ and number of steps=8 (T = 2%)

nc | DoF tol=10"" tol=10""*

N, 1 me+1 na 1 me+1 na

3 (116,640 |57(11.9) 39(8.8) 39(15.7) |41(6.8) 31(5.7) 29(8.8)

4 416,160 |75(39.3) 47(29.6) 45(39.6) |55(21.7) 35(14.9) 35(24.7)
5 11,568,160 | 83(150.9) 53(103.3) 51(158.6) | 66(90.6) 43(58.8) 39(92.1
6 |6,084,000|84(570.8) 55(383.3) 53(585.1) | 68(401.4) 42(252.2) 42(424.1)

Table 5.6 examines four orders of magnitude for 3, ranging from 10~2 (control-
dominant) to 1078 (tracking-dominant). The mean-based preconditioner (n, = 1) ex-
hibits strong dependence on 3, with iteration counts decreasing as /3 decreases (since
smaller § yields problems dominated by the simpler tracking term). In contrast,
the n, = m¢ + 1 truncation maintains stable iteration counts across all tested val-
ues, demonstrating that the hGS preconditioner automatically adapts to the problem
structure without manual parameter tuning. This robustness confirms the theoretical
framework’s applicability across diverse parameter regimes.

TABLE 5.6
Stmulation results using hGS Method with different truncations setting na with the model with
time-dependent diffusion constraint for different tolerance and B at mesh size Np = 2% random

setting with me =3, p = 3, 0x=0.2, and number of steps=8 (T = 2%)

B

DoF

tol=10—F

tol=10—1

n,

1

m§+1

na 1 mg—i—l

nA

1072

1,568,160

107(206.1)

69(136.3) 69(214.8)

74(102.0) 48(70.4)

47(112.6)

10-3

1,568,160

116(164.4)

74(109.4) 74(174.6)

66(90.6) 42(60.7)

42(100.0)

106

1,568,160

97(137.0)

77(115.6) 77(182.5)

57(77.4)  45(65.3)

44(103.7)
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Table 5.7 explores the range o € {1%, 2%, 5%, 10%, 20%,40%}, spanning from
nearly deterministic to highly uncertain regimes. The mean-based preconditioner
(nr = 1) exhibits significant degradation as uncertainty increases, whereas the n, =
m¢ +1 truncation maintains stable iteration counts across the entire range. Especially
when oy increases from 20% to 40%, the mean-based preconditioner performs poorly
with a large number of iterations, but the hGS method maintains robust performance.
This robustness confirms that the hierarchical preconditioner effectively captures the
essential stochastic structure without requiring full expansion of all coupling coeffi-
cients. Table 5.8 investigates the all-at-once system scalability by varying N; from 4

TABLE 5.7

Simulation results using hGS Method with different truncations setting na with the model with
time-dependent diffusion constraint for different tolerance and oy at = 10~%, mesh size N}, = 2%

random setting with me =3, p = 3, and number of steps=8 (T = 2%)

ox | DoF tol=10"6 tol=10—1

N, 1 me+1 na 1 me+1 na

1% 11,568,160 | 51(77.7) 51(85.3) 51(133.9) | 43(68.6) 41(72.7) 41(112.4)
2% 11,568,160 | 53(80.8) 51(82.2) 51(130.0) | 43(70.2) 41(71.1) 41(113.7)
5% | 1,568,160 | 59(90.2) 51(82.1) 51(130.9) | 47(78.3) 41(72.6) 41(113.1)
10% | 1,568,160 | 65(99.2) 51(82.4) 51(130.4) | 53(86.2) 42(70.6) 41(116.5)
20% | 1,568,160 | 83(150.9) 53(103.3) 51(158.6) | 66(90.6) 43(58.8) 39(92.1)
40% | 1,568,160 | 129(200.9) 57(92.3) 51(130.5)|100(179.3) 47(82.3) 43(119.2)

to 256 (time steps 7 € {1/4,1/16,1/64,1/256}), corresponding to total system sizes
ranging from 784,080 to over 12.5 million DoF. As the temporal resolution increases,
the coupled space-time-stochastic system grows proportionally, yet the n, = m¢ +1
truncation maintains sub-linear iteration growth relative to system size. The compu-
tational time scales approximately linearly with DoF, confirming the efficiency of the
all-at-once preconditioner for massively coupled systems.

TABLE 5.8

Simulation results using hGS Method with different truncations setting na with the model with
time-dependent diffusion constraint for different tolerance and oy at = 10—%, mesh size N}, = 2%

random setting with me = 3, p = 3, and number of steps=8 (T = 2%)

T DoF tol=10"0 tol=10"1

N, 1 me+1 na 1 me+1 nA

1/22 | 784,080 81(78.6) 51(51.1) 51(71.1) 66(53.9) 43(37.6) 42(57.2)
1/2%]3,136,320 |85(238.2) 55(166.4) 53(258.7) | 68(174.2) 44(124.3) 43(203.7)
1/2% 12,545,280 [ 101(1029.8) 67(733.3) 65(1205.8) | 78(840.5) 53(604.2) 52(1028.6)

Finally, Table 5.9 compares three gPC configurations: (me,p) € {(3,3), (4,4), (6,3)},
yielding N¢ € {20, 70,84} basis functions. Table 5.9 varies the stochastic discretiza-
tion parameters (mg,p), exploring both the number of random variables and poly-
nomial order. As N¢ increases from 20 to 84, the iteration count for n, = m¢ + 1
grows modestly, demonstrating near-independence from the stochastic discretization
level. This behavior confirms the effectiveness of the hierarchical truncation strategy
in maintaining spectral properties across varying gPC expansion settings.

The time-dependent experiments establish that the proposed all-at-once precon-
ditioner maintains robust performance across a wide range of problem parameters
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TABLE 5.9
Simulation results using hGS Method with different truncations setting na with the model with
time-dependent diffusion constraint for different tolerance and stochastic setting at 8 = 10~%, mesh
size Nj, = 2% random setting with o =0.2, and number of steps=8 (T = 2%)

(me,P) | DoF tol=10" tol=10"%
n, 1 me+1 na 1 me+1 na
20 (3,3) | 1,568,160 | 83(150.9) 53(103.3) 51(158.6) |66(90.6) 43(58.8) 39(92.1)

)
70 (4,4) | 5,488,560 | 95(2435.3) 53(1397.4) 52(2964.7) | 74(1809.2) 43(1044.9) 43(2476.2)
84 (6,3) | 6,586,272 | 93(4092.4) 56(2670.3) 52(5207.4) | 70(3059.4) 43(2107.7) 43(4413.4)

and discretization levels. Four key findings emerge from these results. First, re-
garding near mesh-independence, iteration growth remains sub-linear with spatial
refinement (Table 5.5), consistent with the spectral bounds derived in Section 4.
Second, concerning parameter robustness, the hGS method adapts automatically to
varying § (Table 5.6) and oy (Table 5.7) without manual tuning, demonstrating the
preconditioner’s insensitivity to problem-specific parameters. Third, in terms of scal-
ability, the preconditioner handles systems with over 12.5 million DoF (Table 5.8)
and high stochastic dimensions (Table 5.9) efficiently, validating the computational
feasibility for large-scale applications. Fourth, regarding truncation efficiency, the
nr = mg + 1 strategy consistently delivers performance comparable to the full ex-
pansion at significantly reduced cost, validating the theoretical analysis in Section 4.
These results demonstrate that the hierarchical preconditioning framework extends
seamlessly from steady-state to time-dependent problems, providing a practical and
theoretically-grounded solution for large-scale stochastic optimal control.

6. Conclusions. This paper has successfully designed, analyzed, and imple-
mented a novel hierarchical preconditioning strategy for large-scale stochastic optimal
control problems. Our approach leverages a truncated stochastic expansion within a
block-structured preconditioner for the Karush-Kuhn-Tucker (KKT) system, striking
an effective balance between computational cost and preconditioning quality. Nu-
merical results confirm that the proposed hGS method consistently outperforms both
standard mean-based preconditioners and computationally intensive full-expansion
methods across a wide range of problem parameters.

A key contribution of this work is the extension of this framework to time-
dependent problems. We developed and tested a tailored hGS preconditioner within
an all-at-once discretization scheme, demonstrating the versatility and effectiveness
of our approach for these more challenging, large-scale scenarios. Comprehensive nu-
merical experiments on benchmark problems with Dirichlet boundary conditions have
validated the robustness and numerical efficiency of the proposed algorithms. Future
research could involve extending this preconditioning framework to problems with
more complex PDE constraints, such as the Navier-Stokes equations, or investigating
its application to optimal control problems with inequality constraints.
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