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STOCHASTIC GALERKIN METHOD AND HIERARCHICAL
PRECONDITIONING FOR PDE-CONSTRAINED OPTIMIZATION ∗

ZHENDONG LI† , AKWUM ONWUNTA† , AND BEDŘICH SOUSEDı́K‡

Abstract. We develop efficient hierarchical preconditioners for optimal control problems gov-
erned by partial differential equations with uncertain coefficients. Adopting a discretize-then-optimize
framework that integrates finite element discretization, stochastic Galerkin approximation, and ad-
vanced time-discretization schemes, the approach addresses the challenge of large-scale, ill-conditioned
linear systems arising in uncertainty quantification. By exploiting the sparsity inherent in generalized
polynomial chaos expansions, we derive hierarchical preconditioners based on truncated stochastic
expansion that strike an effective balance between computational cost and preconditioning quality.
Numerical experiments demonstrate that the proposed preconditioners significantly accelerate the
convergence of iterative solvers compared to existing methods, providing robust and efficient solvers
for both steady-state and time-dependent optimal control applications under uncertainty.

1. Introduction. Optimal control problems governed by partial differential equa-
tions (PDEs) arise in numerous applications, including fluid mechanics, structural op-
timization, and inverse problems. These problems have been extensively studied over
the past decades. For a theoretical overview and computational methods related to de-
terministic problems, we refer readers to, e.g., [9, 27]. In many practical applications,
the PDE coefficients are uncertain. Such uncertainties originate from various sources,
including measurement errors, model approximations, and environmental variations,
and they are modeled as random variables or stochastic processes. Recently, there has
been an increased interest in optimal control problems governed by PDEs with random
coefficients, see e.g., [17]. These stochastic problems are inherently more complex than
their deterministic counterparts, thus necessitating specialized numerical methods.

Two alternative strategies are used for the optimal control problems: optimize-
then-discretize and discretize-then-optimize. The optimize-then-discretize approach
involves deriving continuous optimality conditions and then discretizing them. Con-
versely, the discretize-then-optimize approach discretizes the objective and the PDE
first and then solves the resulting discrete optimization problem. The discretize-
then-optimize is widely used in practice, because it allows the employment of effi-
cient numerical methods such as finite element or finite difference methods, see e.g.,
[1, 3, 4, 5, 9]. This approach is also used in this study.

In the formulation of numerical methods, discretizations in the stochastic space,
spatial domain, and potentially time domain are required. For stochastic-space dis-
cretization, several methods exist, including Monte Carlo method, stochastic collo-
cation method and stochastic Galerkin method. The stochastic collocation method
discretizes random variables using a set of collocation points, solving the resulting
deterministic PDEs at these points [8, 13, 12, 26]. The stochastic Galerkin method
expands the solution in terms of orthogonal polynomials and solves the resulting cou-
pled system of equations [10, 14, 15, 16, 21, 30].

Monte Carlo method is simple and therefore popular; however, it typically de-
mands a large number of samples for acceptable accuracy, making it computationally
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intensive for high-dimensional problems. The stochastic collocation method is in gen-
eral more efficient, but it may lose efficiency in high-dimensional random spaces, and
it becomes challenging to implement in practice. Here, we use the stochastic Galerkin
method, which systematically captures uncertainties by employing orthonormal poly-
nomial expansions, preserving optimal convergence properties while improving compu-
tational efficiency for large-scale stochastic PDE-constrained optimization problems.

In practice, it is common to combine temporal discretization (e.g., backward Eu-
ler scheme), stochastic expansions (e.g., generalized polynomial chaos expansions),
and spatial discretization (e.g., finite element method). Specifically, let t0, t1, . . . , tNt

denote a partition of the time interval of interest, ϕi(x)
Nh

i=1 represent a spatial dis-

cretization basis and ψk(ξ)
Nξ

k=1 represent an orthonormal polynomial basis in the ran-
dom space. Then the state y(t,x, ξ) can be approximated by

y(t,x, ξ) ≈
Nt∑

n=0

Nh∑

i=1

Nξ∑

k=1

yn,i,k Θn(t)ϕi(x)ψk(ξ),

where Θn(t) is a temporal basis, and yn,i,k are expansion coefficients (i.e., the degrees
of freedom of the numerical solution) in the basis {Θn(t)ϕi(x)ψk(ξ)}, which are
determined by a suitable numerical method.

The discretize-then-optimize approach leads to large-scale linear systems obtained
via finite element (or possibly finite difference) discretizations, which are then typi-
cally solved using Krylov subspace methods, e.g., by the generalized minimal residual
method (GMRES). These linear systems are often ill-conditioned, which causes a slow
convergence of the iterative method. To address this issue, we construct precondition-
ers that improve the convergence of iterative solvers. We note that the development
of efficient solvers is a general challenge in optimal control, including for deterministic
problems solved via duality-based approaches [28].

In this paper, we introduce a hierarchical preconditioning framework specifically
tailored for stochastic PDE-constrained optimal control problems. Although the core
concepts are inspired by preconditioners for PDE problems [6, 24, 25, 31], an applica-
tion to the Karush-Kuhn-Tucker (KKT) systems arising from optimization problems
and an extension to time-dependent problems are nontrivial and constitutes a primary
contribution of this work. We provide a systematic derivation of the preconditioner
for both steady-state and all-at-once formulation of time-dependent problems. The
method is supported by a rigorous spectral analysis, proving that the proposed pre-
conditioner is spectrally equivalent to the ideal but computationally prohibitive exact
Schur complement. The performance is then evaluated using a set of numerical ex-
periments.

The paper is organized as follows. In Section 2, we address the steady-state
stochastic optimal control problem. We introduce the problem formulation and dis-
cretization into a large-scale KKT system. Then, we construct the hierarchical Gauss-
Seidel preconditioner for PDE-constrained optimal control problems (hGSoc). In
Section 3, we extend the framework to the time-dependent case. We present an all-
at-once discretization and we develop a corresponding parallel-in-time preconditioner.
In Section 4, we provide a spectral analysis of the proposed preconditioners. In Sec-
tion 5, we demonstrate the efficiency of the proposed methods by a series of numerical
experiments. Finally, in Section 6 we conclude and summarize our work.

2. Steady-state problem. Let (Ω,F ,P) be a complete probability space,
where Ω is the sample space, F is the σ-algebra generated by Ω, and P is the proba-
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bility measure. We assume that the uncertainty in our model arises from a vector of

independent random variables ξ =
(
ξ1, . . . , ξmξ

)T
defined as ξ : Ω → Φ ⊂ Rmξ .

Let B(Φ) be the Borel σ-algebra on Φ induced by ξ, and let µ denote the correspond-
ing probability measure. The expectation of the product of measurable functions u
and v depending on ξ defines a Hilbert space L2 (Φ) := L2 (Φ,B(Φ), µ) equipped with
the inner product

⟨u, v⟩ = E [uv] =

∫

Φ

u (ξ) v (ξ) dµ (ξ) ,

where E denotes the mathematical expectation.
We consider a stochastic PDE coefficient k(x, ρ), where x is the coordinate in the

physical space, and ρ represents random inputs. It is assumed that k(x, ρ) is bounded
away from zero and infinity, i.e., 0 < kmin ≤ k(x, ρ) ≤ kmax < ∞ for some constants
kmin, kmax, and it can be represented by a truncated Karhunen-Loève(KL) expansion

k(x, ρ) ≈ κ0(x) +
∑mξ

i=1

√
θiκi(x)ξi(ρ), (2.1)

where κ0(x) is the mean function, and (θi, κi(x)) is the i-th eigenpair (eigenvalue and
eigenfunctions, respectively) of the covariance function

Ck(x, y) = E [(k(x, ρ)− κ0(x)) (k(y, ρ)− κ0(y))] , (2.2)

defined in physical domain D ⊂ Rn with piecewise continuous boundary ∂D, such that

∫

D
Ck(x, y)κi(y)dy = θiκi(x). (2.3)

The system of eigenfunctions κi(x) is orthonormal in the space L2(D), and the eigen-
values θi are arranged in a nonincreasing order. We next introduce the random
variables ξi(ρ). They are centered, normalized, and uncorrelated. In that they satisfy

E[ξi] = 0, E[ξiξj ] = δij , (2.4)

where δij is the Kronecker delta. Specifically, they are defined as

ξi(ρ) =
1√
θi

∫

D
(k(x, ρ)− κ0(x))κi(x) dx.

We will assume that the variables ξi are independent, identically distributed (i.i.d.).

2.1. Problem formulation. We consider the steady-state optimal control prob-
lem given by

min
y,u

J(y, u) :=
1

2

∫

Φ

∫

D
|y − yd|2dx dµ(ξ) +

β

2

∫

Φ

∫

D
|u|2 dx dµ(ξ) + γ

2

∫

D
|σ(y)|2 dx,

(2.5)
subject to

{
−∇ · (k (x, ξ)∇y (x, ξ)) = u (x, ξ) , in D × Φ,

y (x, ξ) = g (x) , on ∂D × Φ,
(2.6)
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where y is the state, yd is the target state, and u is the (distributed) control. The
parameter γ penalizes the variance σ2(y) of the state y, which is defined as

σ(y) =
√

E [(y − E[y])2] =
[∫

Φ

|y − E[y]|2dµ(ξ)
]1/2

. (2.7)

Observe that both the state y and control u are stochastic. In view of the Doob-
Dynkin lemma (see, e.g., [2]), both y and u admit the same parametric dependence
on ξ. In computations, we work with a finite dimensional subspace Tp⊂L2 (Φ,B(Φ), µ),
spanned by a set of generalized polynomial chaos (gPC) functions {ψℓ (ξ)}Nξ

ℓ=1 with

⟨ψℓ, ψk⟩ = E [ψℓψk] =

∫

Φ

ψℓ(ξ)ψk(ξ)dµ = δℓk, (2.8)

ψ1(ξ) = 1, and E[ψk(ξ)] = 0 for k > 1. Considering polynomials of total degree p
and the number of random variables mξ, the dimension of Tp is Nξ =

(
mξ+p

p

)
. After

the application of the stochastic Galerkin finite element discretization to (2.5)–(2.6),
both the state y and control u are expanded as

v =
∑Nξ

k=1

∑Nh

i=1
vikϕi(x)ψk(ξ), v = y oru. (2.9)

Using the KLE as given by (2.1) in the finite element discretization of the PDE con-
straint (2.6) yields the stiffness matrices Aℓ associated with the expansion coefficients,

Aℓ = [(Aℓ)ab], (Aℓ)ab =

∫

D

√
θℓκℓ(x)∇ϕa(x) · ∇ϕb(x) dx, a, b = 1, 2, . . . , Nh.

(2.10)
We note that all matrices Aℓ share the same sparsity pattern. The global stiffness

matrix is given by A =
∑nA

ℓ=1Hℓ ⊗Aℓ, where the matrices Hℓ are defined below.
In implementation, we use the matricized format, which utilizes the isomorphism

between RNhNξ and RNh×Nξ , defined via the operators vec and mat. Specifically,

V̄ = mat(v̄) =
[
v1, v2, . . . , vNξ

]
∈ RNh×Nξ , (2.11)

where the column k contains the coefficients associated with the basis function ψk, and
v̄ = vec

(
V̄
)
∈ RNhNξ . We will use lowercase letters for the vectorized representation

and uppercase letters for the matricized counterpart so, e.g., R̄ = mat(r̄), etc.
We will also use the notation

Hℓ = [hℓ,jk] , hℓ,jk ≡ E [ψℓψjψk] , ℓ = 1, . . . , nA, j, k = 1, . . . , Nξ,

where we note that all matrices Hℓ are symmetric, and

Hσ = diag (0, h1,jj) , j = 2, . . . , Nξ,

which is obtained fromH1 by setting h1,11 = 0. We note that in our settingsH1 = INξ
,

i.e., it is an identity matrix of size Nξ. Finally, we denote

M = H1 ⊗M, Mσ = Hσ ⊗M, (2.12)

where M is the mass matrix. Using the stochastic Galerkin framework to discretize
problem (2.5)–(2.6), we get

min
y,u

J (y,u) =
1

2
(y − yd)

T M (y − yd) +
γ

2
yTMσy +

β

2
uTMu,
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subject to

−Ay +Mu = g. (2.13)

The Lagrangian corresponding to this problem is

L (y,u, λ) =
1

2
(y − yd)

T M (y − yd)+
γ

2
yTMσy+

β

2
uTMu+λT (−Ay +Mu− g) .

(2.14)
Applying the first-order optimality conditions to (2.14), using Hγ = H1 + γHσ, and

Mγ = Hγ ⊗M, A =
∑nA

ℓ=1
Hℓ ⊗Aℓ,

we get the KKT system of equations, which can be written in the matrix form as




Mγ 0 −AT

0 βM MT

−A M 0






y
u
λ


 =




Myd

0
g


 . (2.15)

The stochastic Galerkin matrix in (2.15) is symmetric, indefinite, and in general very
large. It is ill-conditioned, and therefore, a good preconditioner is required to solve
the system efficiently. Next, we introduce a preconditioner to tackle this problem.

2.2. Schur complement based preconditioner. A block-diagonal precondi-
tioner for (2.15) is given by (see, e.g. Benner et al. [5]):

P :=




Mγ 0 0
0 βM 0
0 0 Sexact


 , (2.16)

where Sexact is the exact Schur complement

Sexact = AM−1
γ AT +

1

β
M. (2.17)

The first two blocks corresponding to (scaling of) the mass matrix are block diagonal,
and the inverses are approximated by Chebyshev semi-iteration listed as Algorithm 5.
However, forming and applying the inverse of Sexact is computationally prohibitive.
The primary difficulty stems from its additive structure. Therefore, the key to an
efficient solution lies in designing an approximation S that is spectrally close to Sexact

and easy to invert. Following the approach in [5], we employ the approximation

S = ZM−1
γ ZT , Z = A+

√
1 + γ

β
M =

nA∑

ℓ=1

Hℓ ⊗ Ãℓ, (2.18)

where

Ã1 = A1 +

√
1 + γ

β
M, Ãℓ = Aℓ, ℓ = 2, . . . , nA.

Since Z is symmetric, we have S−1 = Z−1MγZ−1. In [5], the authors studied a
mean-based preconditioner derived from (2.18) by dropping all the terms of Z except
the first term; that is, Z ≈ H1 ⊗ Ã1. However, this mean-based preconditioner is
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only effective when the variability in the model is relatively small, but struggles as
the standard deviation increases.

In this study, we overcome this shortcoming by using hierarchical preconditioning
introduced in [24, 25] in the context of forward problems. More specifically, unlike
[24, 25], we extend this strategy to the more challenging setting – stochastic optimal
control problem, and rigorously study the spectral analysis of the new preconditioner.
To this end, we formulate the preconditioners in the matricized format. First, we
rewrite the linear system (2.15) using this format. Using (2.11) and the identity

(V ⊗W ) vec(X) = vec(WXV T ), (2.19)

the system (2.15), can be equivalently written, cf. also [5, eq. (53)], as

MȲ Hγ −
nA∑

ℓ=1

AT Λ̄Hℓ =MȲdH1,

βMŪH1 +MT Λ̄H1 = 0,

−
nA∑

ℓ=1

AT Ȳ Hℓ +MŪH1 = Ḡ.

(2.20)

Finally, we note that a matrix-vector product with Z from (2.18) can be written as

Z v̄ = vec
(∑nA

ℓ=1
ÃℓV̄ Hℓ

)
. (2.21)

2.3. Block-diagonal hierarchical Gauss-Seidel preconditioner. We first
recall the preconditioner for the forward PDE problem from [24]. However, in this
work, we present it in the matricized format as Algorithm 1. Moreover, we for-
mulate the corresponding preconditioner for the optimal control problem as Algo-
rithm 2–3. To set the notation, we will denote by V̄(i:n) a submatrix of V̄ containing
columns i, i+ 1, . . . , n, and, in particular, V̄ = V̄(1:nξ). There are two components of
the preconditioner. The first component consists of block-diagonal solves with blocks
of varying sizes. The second component is used in the setup of the right-hand sides for
the solves, and consists of matrix-vector products by certain subblocks of the stochas-
tic Galerkin matrix by vectors of corresponding sizes. To this end, we will write[
ht,(ℓ)(k)

]
, with (ℓ) and (k) denoting a set of (consecutive) rows and columns of ma-

trix Ht so that, in particular, Ht =
[
ht,(1:nξ)(1:nξ)

]
. Let us also denote v̄(ℓ) = vec(V̄(ℓ)).

Then, the matrix-vector products can be written, cf. (2.19) and noting the symmetry
of Ht, as

v̄(ℓ) =
∑

t∈It

(
[
ht,(ℓ)(k)

]
⊗ Ãt)ū(k) ⇔ V̄(ℓ) =

∑
t∈It

ÃtŪ(k)

[
ht,(k)(ℓ)

]
, (2.22)

where It is an index set It ⊆ {1, . . . , nξ} indicating that the matrix-vector products
may be truncated. Possible strategies for truncation are discussed in [24]. In this
study, we use It = {1, . . . , nt} with nt =

(
mξ+pt

pt

)
for some pt ≤ p. In particular,

we set t = {0, 1, 2} and with It = ∅ both preconditioners in Algorithms 1 and 2–3
reduce to mean-based variants. We also note that, since the initial guess is zero in
Algorithm 1, the multiplications by F1 and Fd+1 vanish from (2.23)–(2.24).

Next, we apply the hGS strategy to form a preconditioner for the KKT system.
The preconditioner is formulated as Algorithm 2–3. It adapts the core idea of Algo-
rithm 1 to handle the coupled variables corresponding to the state V̄ Y , control V̄ U ,
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Algorithm 1 [24, Algorithm 3] Hierarchical Gauss-Seidel preconditioner (hGS)

The preconditioner ZhGS : R̄ 7−→ V̄ is defined as follows.

1: Set the initial solution V̄ to zero and update in the following steps:
2: Solve

Ã1V̄(1) = R̄(1) −F1, where F1 =
∑

t∈It

ÃtV̄(2:Nξ)

[
ht,(2:Nξ)(1)

]
. (2.23)

3: for d = 1, . . . , p− 1 do
4: Set ℓ = (nℓ + 1 : nu) , where nℓ =

(
mξ+d−1

d−1

)
and nu =

(
mξ+d

d

)
.

5: Solve

Ã1V̄(ℓ) = R̄(ℓ) − Ed+1 −Fd+1, (2.24)

where

Ed+1 =
∑

t∈It

ÃtV̄(1:nℓ)

[
ht,(1:nℓ)(ℓ)

]
, Fd+1 =

∑

t∈It

ÃtV̄(nu+1:Nξ)

[
ht,(nu+1:Nξ)(ℓ)

]
.

6: end for
7: Set ℓ = (nu + 1 : nξ).
8: Solve

Ã1V̄(ℓ) = R̄(ℓ) − Ep+1, where Ep+1 =
∑

t∈It

ÃtV̄(1:nu)

[
ht,(1:nu)(ℓ)

]
,

9: for d = p− 1, . . . , 1 do
10: Set ℓ = (nℓ + 1 : nu) , where nℓ =

(
mξ+d−1

d−1

)
and nu =

(
mξ+d

d

)
.

11: Solve (2.24).
12: end for
13: Solve (2.23).

and adjoint V̄ Λ simultaneously at each hierarchical level. A key computational step
of Algorithm 2–3 entails a solve with an approximation P̃ of the deterministic KKT
system. Since this system is relatively small and constant across all hierarchical levels,
it can be handled efficiently, for instance, by computing a direct factorization of P̃
once and reusing it for all subsequent solves. The overall performance of the precon-
ditioner is thus determined by the cost of these deterministic solves and the number
of truncated off-diagonal matrix-vector products.

3. Time-dependent problem.

3.1. Problem formulation. The time-dependent optimal control problem is
given by

min
y,u

J (y, u) =
1

2

∫ T

0

∫

Φ

∫

D
|y − yd|2dx dµ(ξ) dt+

β

2

∫ T

0

∫

Φ

∫

D
|u|2dx dµ(ξ) dt

+
γ

2

∫ T

0

∫

Φ

∫

D
|σ(y)|2dx dµ(ξ) dt, (3.1)
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Algorithm 2 hGS preconditioner for the optimal control problem (hGSoc)

The preconditioner PhGSoc :
(
R̄Y , R̄U , R̄Λ

)
7−→

(
V̄ Y , V̄ U , V̄ Λ

)
is defined as follows.

1: Set the initial solution
(
V̄ Y , V̄ U , V̄ Λ

)
to zero and update in the following steps:

2: Solve

P̃



V̄ Y
(1)

V̄ U
(1)

V̄ Λ
(1)


 =



R̄Y

(1) − C1 +D1

R̄U
(1) − E1 −F1

R̄Λ
(1) + G1 −H1


 , (2.25)

where

C1 =MV̄ Y
(2:nξ)

[
hα(2:nξ)(1)

]
, D1 =

∑

t∈It

AtV̄
Λ
(2:nξ)

[
ht,(2:nξ)(1)

]
,

E1 = βMV̄ U
(2:nξ)

[
h1,(2:nξ)(1)

]
, F1 =MV̄ Λ

(2:nξ)

[
h1,(2:nξ)(1)

]
,

G1 =
∑

t∈It

AtV̄
Y
(2:nξ)

[
ht,(2:nξ)(1)

]
, H1 =MV̄ U

(2:nξ)

[
h1,(2:nξ)(1)

]
.

3: for d = 1, . . . , p− 1 do
4: Set ℓ = (nℓ + 1 : nu) , where nℓ =

(
mξ+d−1

d−1

)
and nu =

(
mξ+d

d

)
.

5: Solve

P̃



V̄ Y
(ℓ)

V̄ U
(ℓ)

V̄ Λ
(ℓ)


 =



R̄Y

(ℓ) − Cd+1 +Dd+1

R̄U
(ℓ) − Ed+1 −Fd+1

R̄Λ
(ℓ) + Gd+1 −Hd+1


 , (2.26)

where

Cd+1 =M
(
V̄ Y
(1:nℓ)

[
hα(1:nℓ)(ℓ)

]
+ V̄ Y

(nu+1:nξ)

[
hα(nu+1:nξ)(ℓ)

])
,

Dd+1 =
∑

t∈It

At

(
V̄ Λ
(1:nℓ)

[
ht,(1:nℓ)(ℓ)

]
+ V̄ Λ

(nu+1:nξ)

[
ht,(nu+1:nξ)(ℓ)

])
,

Ed+1 = βM
(
V̄ U
(1:nℓ)

[
h1,(1:nℓ)(ℓ)

]
+ V̄ U

(nu+1:nξ)

[
h1,(nu+1:nξ)(ℓ)

])
,

Fd+1 =M
(
V̄ Λ
(1:nℓ)

[
h1,(1:nℓ)(ℓ)

]
+ V̄ Λ

(nu+1:nξ)

[
h1,(nu+1:nξ)(ℓ)

])
,

Gd+1 =
∑

t∈It

At

(
V̄ Y
(1:nℓ)

[
ht,(1:nℓ)(ℓ)

]
+ V̄ Y

(nu+1:nξ)

[
ht,(nu+1:nξ)(ℓ)

])
,

Hd+1 =M
(
V̄ U
(1:nℓ)

[
h1,(1:nℓ)(ℓ)

]
+ V̄ U

(nu+1:nξ)

[
h1,(nu+1:nξ)(ℓ)

])
.

6: end for

subject to





∂y(t,x, ξ)

∂t
−∇ · (k(x, ξ)∇y(t,x, ξ)) = u(t,x, ξ) in (0, T ]×D × Φ,

y(t,x, ξ) = g on (0, T ]× ∂D × Φ,

y(0,x, ξ) = y0 in D × Φ.

(3.2)
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Algorithm 3 hGS preconditioner for the optimal control problem (hGSoc), cont’d

7: Set ℓ = (nu + 1 : nξ).
8: Solve

P̃



V̄ Y
(ℓ)

V̄ U
(ℓ)

V̄ Λ
(ℓ)


 =



R̄Y

(ℓ) − Cp+1 +Dp+1

R̄U
(ℓ) − Ep+1 −Fp+1

R̄Λ
(ℓ) + Gp+1 −Hp+1


 ,

where

Cp+1 =MV̄ Y
(1:nu)

[
hα(1:nu)(ℓ)

]
, Dp+1 =

∑

t∈It

AtV̄
Λ
(1:nu)

[
ht,(1:nu)(ℓ)

]
,

Ep+1 = βMV̄ U
(1:nu)

[
h1,(1:nu)(ℓ)

]
, Fp+1 =MV̄ Λ

(1:nu)

[
h1,(1:nu)(ℓ)

]
,

Gp+1 =
∑

t∈It

AtV̄
Y
(1:nu)

[
ht,(1:nu)(ℓ)

]
, Hp+1 =MV̄ U

(1:nu)

[
h1,(1:nu)(ℓ)

]
.

9: for d = p− 1, . . . , 1 do
10: Set ℓ = (nℓ + 1 : nu) , where nℓ =

(
mξ+d−1

d−1

)
and nu =

(
mξ+d

d

)
.

11: Solve (2.26).
12: end for
13: Solve (2.25).

After the application of the stochastic Galerkin finite element discretization to (3.1),
and using the trapezoidal rule for the time discretization, where Nt = T/τ is the
number of time steps over the interval [0, T ] with time-step size τ , we obtain

min
y,u

J (y,u) =
τ

2
(y − yd)

T (D ⊗Mγ) (y − yd) +
τβ

2
uT (D ⊗M)u, (3.3)

where M and Mγ are defined in (2.12), D in (3.7) below, y, yd, and u are vec-
tors corresponding to the state, desired state, and control, respectively, that contain
concatenated vectors yi,ydi,ui ∈ RNhNξ×1, i = 1, . . . , Nt, due to the time-stepping,

y =



y1

...
yNt


 , yd =



yd1
...

ydNt


 , and u =



u1

...
uNt


 .

After the application of the stochastic Galerkin finite element discretization to (3.2),
and using the implicit Euler method for the time discretization, we obtain

Myk + τAyk =Myk−1 + τMuk. (3.4)

Combining all time steps of (3.4) in all-at-once discretization ([18, 20]), we can write

Aty − τNu =
[
My0 , 0 , . . . , 0

]T
.

where

At =




L
−M L

. . .
. . .

−M L


 , N =




M
M

. . .

M


 ,
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and

L = H1 ⊗ (M + τA1) + τ

nA∑

ℓ=2

Hℓ ⊗Aℓ. (3.5)

The matrices At and N can be constructed using Kronecker product as

At = (INt
⊗ L)− (C ⊗M) , N = INt

⊗H1 ⊗M, (3.6)

where the matrix C and matrix D, used in (3.3) and also below, are defined as

C =




0
−1 0

. . .
. . .

−1 0


 , D =




1
2

1
. . .

1
1
2



. (3.7)

Forming the Lagrangean and applying the first-order optimality conditions, we get


τD ⊗Mγ 0 −AT

t

0 βτD ⊗M τN T

−At τN 0





y
u
λ


 =



τ (D ⊗M) · (1Nt

⊗ yd)
0
d


 , (3.8)

where d =
[
My0 + g g · · · g

]
, and 1Nt

∈ RNt×1 is the column all-ones vector.

3.2. PINT-based block-diagonal hierarchical Gauss-Seidel preconditioner.
In analogy to (2.16), we propose a preconditioner for (3.8) as

PhGSoc-PINT ≈



τD ⊗Mγ

τβD ⊗M
S̄


 , (3.9)

where S̄ is a computationally efficient approximation of the exact Schur complement

S̄exact =
1

τ
At (D ⊗Mγ)

−1 AT
t +

β

τ
N (D ⊗M)

−1 N T . (3.10)

As before, the first two blocks correspond to (scaling of) the mass matrix are approx-
imated by Chebyshev semi-iteration from Algorithm 5. Since the iteration entails
matrix-vector multiplications, we note that using (2.19) we have

(τD ⊗H1 ⊗M)v1 = τ




1
2 vec (MV11Hγ)
vec (MV12Hγ)

...
1
2 vec (MV1Nt

Hγ)


 , (3.11)

(βτD ⊗H1 ⊗M)v2 = βτ




1
2 vec (MV21H1)
vec (MV22H1)

...
1
2 vec (MV2Nt

H1)


 , (3.12)

where v1 and v2 are the vectors obtained by concatenating v1i and v2i, i = 1, . . . , Nt,
respectively, which correspond to the time steps. The matrices V1i, V2i ∈ RNh×Nξ are
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then the matricized counterparts of v1i and v2i, respectively. Next, since inverting
S̄exact is computationally prohibitive, we propose an approximation as

S̄ =
1

τ

(
At + τ

√
1 + γ

β
N
)

︸ ︷︷ ︸
=:Z̄

(D ⊗Mγ)
−1

(
At + τ

√
1 + γ

β
N
)T

, (3.13)

where using (3.5) and (3.6), we can rewrite Z̄ as

Z̄ = INt
⊗
(
H1 ⊗ (M + τA1) + τ

nA∑

ℓ=2

Hℓ ⊗Aℓ

)
+τ

√
1 + γ

β
INt

⊗H1⊗M−C⊗H1⊗M.

(3.14)
By dropping the last term C ⊗H1 ⊗M , we further approximate Z̄ by

Z̃ = INt ⊗
{
H1 ⊗

[
(1 + τ

√
1 + γ

β
)M + τA1

]
+ τ

nA∑

ℓ=2

Hℓ ⊗Aℓ

}
, (3.15)

which is symmetric. The idea is to use S̄ ≈ Z̃ (D ⊗Mγ)
−1 Z̃, and in particular the

solves with Z̃ are approximated by Algorithm 1, similarly to the steady-state case.
We remark that by dropping all terms with ℓ > 2 from Z̃ in (3.15), that is considering

Z̃0 = INt ⊗H1 ⊗
[
(1 + τ

√
1 + γ

β
)M + τA1

]
,

we recover the mean-based preconditioner [5]. Since the application of Algorithm 1
entails matrix-vector multiplications, using (2.19) we formulate Z̃v3 as

Z̃v3 =

(
INt

⊗
{
H1 ⊗

[
(1 + τ

√
1 + γ

β
)M + τA1

]
+ τ

N∑

ℓ=2

Hℓ ⊗Aℓ

})
v3

=




∑nA

ℓ=1 vec
(
ÂℓV31Hℓ

)

∑nA

ℓ=1 vec
(
ÂℓV32Hℓ

)

...∑nA

ℓ=1 vec
(
ÂℓV3Nt

Hℓ

)



,

(3.16)

where

Âℓ =

{(
1 + τ

√
1+γ
β

)
M + τA1, ℓ = 1,

τAℓ, ℓ = 2, . . . , nA,

and V3i ∈ RNh×Nξ is the matricized form of the i-th block of v3, with i = 1, . . . , Nt.
The practical implementation of the preconditioner for the time-dependent system

leverages the inherent structure of the all-at-once formulation. As defined in (3.15),
the core operator of the Schur complement preconditioner, Z̃, is block-diagonal with
respect to the time steps. This structure extends to the entire KKT system, which
then makes the preconditioning easily parallelizable. Specifically, an application of the
preconditioner PhGSoc-PINT entails an application of the steady-state optimal control

11



preconditioner PhGSoc from Algorithm 2–3 to all time steps simultaneously, and so it
represents parallel-in-time (PINT) approach. It is summarized as Algorithm 4.

Algorithm 4 Parallel-in-time hGSoc preconditioner (hGSoc-PINT)

The preconditioner PhGSoc-PINT : R̄ 7−→ V̄ is defined as:

1: for k = 1, . . . , Nt do
2: Extract (R̄Y

k , R̄
U
k , R̄

Λ
k ). (the subvector k of R̄)

3: Calculate (V̄ Y
k , V̄ U

k , V̄
Λ
k ) = PhGSoc(R̄

Y
k , R̄

U
k , R̄

Λ
k ) (apply Algorithm 2–3)

4: end for
5: Concatenate {(V̄ Y

k , V̄ U
k , V̄

Λ
k )}Nt

k=1 into V̄.

4. Spectral analysis (time-dependent case). Since the steady-state optimal
control problem can be viewed as a special case of the time-dependent formulation
(with Nt = 1), we focus on analyzing the time-dependent setting; the steady-state
results then follow as a direct consequence. The all-at-once discretization, presented
in Section 3.1, couples all time steps simultaneously, yielding a significantly larger
KKT system than its steady-state counterpart. Our goal is to prove that the pro-
posed parallel-in-time preconditioner, based on the hGSoc-PINT in Algorithm 4, is
spectrally equivalent to the ideal (but computationally inexpensive) preconditioner.

We begin by recalling the notion of spectral equivalence, which serves as the
foundation for our analysis.

Definition 4.1 (Spectral Equivalence). Two matrices A and B are said to be
spectrally equivalent, denoted A ∼ B, if there exist positive constants a ≤ b, such that

avTBv ≤ vTAv ≤ bvTBv

holds for all non-zero vectors v. Equivalently, all eigenvalues of the preconditioned
matrix B−1A are contained within the fixed interval, which means λ(B−1A) ⊂ [a, b].
Our proof proceeds by establishing a chain of spectral equivalences among the follow-
ing operators:

S̄exact ∼ S̄ ∼ S̃ ∼ S̃r ∼ S̃hGS-PINT.

Here, S̄exact denotes the exact Schur complement (3.10), S̄ is an approximation of

S̄exact defined in (3.13), and S̃ is a block-diagonal approximation obtained by replacing

Z̄ in (3.13) with Z̃ from (3.15), which eliminates time-coupling terms and enables

parallel-in-time computation. The operator S̃r represents the truncated hierarchical
preconditioner

S̃r = Z̃r (D⊗Mγ)
−1 Z̃⊤

r , Z̃r = INt ⊗
{
H1 ⊗

[
(1 + τ

√
1+γ
β

)M + τA1

]
+ τ

r∑

ℓ=2

Hℓ ⊗Aℓ

}
,

with r = 1, . . . , nA. When r = 1, S̃r reduces to the mean-based preconditioner em-
ployed in [5], and when r = nA, it recovers the full operator S̃. Finally, S̃hGS-PINT =
Z̃hGS-PINT(D⊗Mγ)

−1Z̃T
hGS-PINT represents the computationally feasible approxima-

tion of S̃r in which the linear systems Z̃rx = b are solved approximately via the
hierarchical Gauss-Seidel method (Algorithm 1), as implemented in the parallel-in-
time framework of Algorithm 4.

To establish the spectral equivalences in this chain, we require several technical
results. We begin with two auxiliary lemmas concerning matrix perturbations and
congruence transformations, which will serve as building blocks for the main theorems.
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Lemma 4.2. Let A and Ar be symmetric positive definite matrices satisfying
(1− ε1)A ⪯ Ar ⪯ (1+ ε2)A in the Loewner order for some 0 < ε1, ε2 < 1. Let B be a
symmetric positive semidefinite matrix. Then, the eigenvalues of the preconditioned
matrix (A+B)−1(Ar +B) are bounded as follows:

1− ε1 ≤ λ
(
(A+B)−1(Ar +B)

)
≤ 1 + ε2.

Proof. The eigenvalues λ are given by the generalized eigenvalue problem (Ar +
B)v = λ(A + B)v. By the Courant-Fischer theorem, these eigenvalues are bounded
by the range of the corresponding Rayleigh quotient. For any non-zero vector v, let
a := vTAv > 0 and b := vTBv ≥ 0. The assumption (1 − ε1)A ⪯ Ar ⪯ (1 + ε2)A
implies that

(1− ε1)a ≤ vTArv ≤ (1 + ε2)a.

We can now bound the Rayleigh quotient:

λ
(
(A+B)−1(Ar +B)

)
=

vT (Ar +B)v

vT (A+B)v
=

vTArv + b

a+ b
.

Applying the bounds for vTArv, we get

(1− ε1)a+ b

a+ b
≤ λ ≤ (1 + ε2)a+ b

a+ b
.

Simplifying the lower and upper bounds yields

1− ε1
a

a+ b
≤ λ ≤ 1 + ε2

a

a+ b
.

Let c := a
a+b . Since a > 0, b ≥ 0, it follows that 0 < c ≤ 1. Thus, for any vector v ̸= 0,

the corresponding value of the Rayleigh quotient lies in the interval [1− ε1c, 1 + ε2c].
Because 0 < c ≤ 1, this interval is always contained within the larger, fixed interval
[1− ε1, 1 + ε2]. Therefore, all eigenvalues are bounded by 1− ε1 and 1 + ε2.

Lemma 4.3 (Eigenvalues under Congruence Transformation). Let C and D be
symmetric positive definite matrices, and let Q be a nonsingular matrix. The eigenval-
ues of the pair (C,D) are identical to those of the transformed pair (QTCQ,QTDQ).

Proof. Let (λ,x) be an eigenpair satisfying the generalized eigenvalue problem
Cx = λDx, with eigenvector x ̸= 0. We perform a change of variables by setting
x = Qy. Since Q is nonsingular, x ̸= 0 implies that the transformed vector y ̸= 0.
Substituting x = Qy into the original problem gives:

C(Qy) = λD(Qy).

Multiplying from the left by QT , we obtain:

(QTCQ)y = λ(QTDQ)y.

This final expression is the generalized eigenvalue problem for the pair (QTCQ,QTDQ),
which is satisfied by the same eigenvalue λ with the transformed eigenvector y. There-
fore, the sets of eigenvalues for both pairs are identical.

With these auxiliary results in place, we now proceed to establish the spectral
equivalences in the chain S̄exact ∼ S̄ ∼ S̃ ∼ S̃r ∼ S̃hGS-PINT. We begin by proving the
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first equivalence, S̄ ∼ S̄exact, which shows that our factorized approximation (3.13) is
spectrally close to the exact Schur complement.

Theorem 4.4 (Theorems 4, 6 in [5]). Let S̄exact be the exact Schur complement
and S̄ be its approximation as defined in (3.13) for the steady-state case or (3.9) for
the time-dependent case. For any α ≥ 0 satisfying the condition below, the eigenvalues
of S̄−1S̄exact are bounded as

λ(S̄−1S̄exact) ⊆
[

1

2(1 + α)
, 1

)
. (4.1)

The condition on α satisfies

α <

(√
κ(At) + 1√
κ(At)− 1

)2

− 1. (4.2)

Next, we show the relationship between S̄ and the matrix S̃ = Z̃(D ⊗ Mγ)
−1Z̃T

defined in (3.15). To do this, we first introduce a standard lemma concerning singular
value perturbation.

Lemma 4.5. For any matrices A and B of the same dimensions,

σmin(A+B) ≥ σmin(B)− ∥A∥2.

Here, σmin(·) denotes the smallest singular value of its matrix argument.
Proof. From the triangle inequality, for any vector x, with ∥x∥2 = 1, we have

∥(A+B)x∥2 = ∥Bx− (−A)x∥2 ≥ ∥Bx∥2 − ∥Ax∥2.

Taking the minimum over all unit vectors x on both sides of the inequality, we get

min
∥x∥2=1

∥(A+B)x∥2 ≥ min
∥x∥2=1

(∥Bx∥2 − ∥Ax∥2) .

Using the property that min(f − g) ≥ min(f)−max(g), we obtain

min
∥x∥2=1

(∥Bx∥2 − ∥Ax∥2) ≥ min
∥x∥2=1

∥Bx∥2 − max
∥x∥2=1

∥Ax∥2.

By the definitions of the minimum singular value and the operator norm, the above
expression is equivalent to σmin(A+B) ≥ σmin(B)− ∥A∥2.

Lemma 4.6. Let W = (D ⊗ Mγ)
−1, and assume that there exists a constant

µ > 1 such that

τ

√
1 + γ

β
σmin(NW

1
2 ) ≥ µ∥(At + C ⊗M)W

1
2 ∥2. (4.3)

Then the minimum eigenvalue of S̃ has the following lower bound

λmin(S̃) ≥
τ

β

(
1− 1

µ

)2

σ2
min(M

1
2 ).

Proof. From the definition of S̃ and the properties of the minimum eigenvalue,

λmin(S̃) = λmin(Z̃W Z̃T ) = σ2
min(Z̃W

1
2 ).
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Since Z̃W 1
2 = τ

√
1+γ
β NW

1
2 + (At + C ⊗M)W

1
2 , applying Lemma 4.5 yields

σmin(Z̃W
1
2 ) ≥ τ

√
1 + γ

β
σmin(NW

1
2 )− ∥(At + C ⊗M)W

1
2 ∥2.

We assume there exists a constant µ > 1 such that

τ

√
1 + γ

β
σmin(NW

1
2 ) ≥ µ∥(At + C ⊗M)W

1
2 ∥2.

Using the assumption (4.3), we obtain1

σmin(Z̃W
1
2 ) ≥

(
1− 1

µ

)
τ

√
1 + γ

β
σmin(NW

1
2 ).

Consequently, the lower bound for λmin(S̃) is:

λmin(S̃) ≥
(
1− 1

µ

)2(
τ

√
1 + γ

β

)2

σ2
min(NW

1
2 ).

Next, observe that

σ2
min(NW

1
2 ) = σ2

min

(
(INt

⊗M)(D− 1
2 ⊗M− 1

2
γ )

)

= σ2
min

(
(INt

D− 1
2 )⊗ (MM− 1

2
γ )

)

= σ2
min(D

− 1
2 ) · σ2

min(MM− 1
2

γ ).

It is easy to verify that σmin(D
− 1

2 ) = 1 and

σ2
min(MM− 1

2
γ ) = σ2

min((H1 ⊗M)(H
− 1

2
γ ⊗M− 1

2 ))

= σ2
min((H1H

− 1
2

γ )⊗ (MM− 1
2 ))

=
1

1 + γ
σ2
min(M

1
2 ).

Thus, we have

σ2
min(NW

1
2 ) =

1

1 + γ
σ2
min(M

1
2 ).

Substituting this into the expression for the lower bound of λmin(S̃), we finally get

λmin(S̃) ≥
(
1− 1

µ

)2
τ2(1 + γ)

β

(
1

1 + γ
σ2
min(M

1
2 )

)
=
τ

β

(
1− 1

µ

)2

σ2
min(M

1
2 ).

(4.4)

We can now state the following result.
Theorem 4.7. Assume that the conditions of Lemma 4.6 hold. Then, the the

eigenvalues λ(S̄−1S̃) satisfy

(1− θ)2 ≤ λ(S̄−1S̃) ≤ (1 + θ)2,

1In our experience, this condition is often satisfied numerically when τ ≫ √
β.
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where θ is the perturbation parameter, with

θ := sup
v ̸=0

∥W 1
2 (C ⊗M)Tv∥2
∥W 1

2 Z̃Tv∥2
≤

√
2β

√
1 + γ

(
1− 1

µ

)
τ
κ(M

1
2 ).

Proof. By the definition of θ and the triangle inequality, for any v ̸= 0, we have
∣∣∣∥W 1

2 Z̃Tv∥2 − ∥W 1
2 (C ⊗M)Tv∥2

∣∣∣ ≤ ∥W 1
2 Z̄Tv∥2 ≤ ∥W 1

2 Z̃Tv∥2+∥W 1
2 (C⊗M)Tv∥2.

Using the bound ∥W 1
2 (C ⊗M)Tv∥2 ≤ θ∥W 1

2 Z̃Tv∥2, we obtain

(1− θ)∥W 1
2 Z̃Tv∥2 ≤ ∥W 1

2 Z̄Tv∥2 ≤ (1 + θ)∥W 1
2 Z̃Tv∥2.

Squaring these inequalities leads to the spectral bounds

(1− θ)2 ≤ λ(S̄−1S̃) ≤ (1 + θ)2.

Next, it remains to analyze the upper bound of θ. To this end, observe that

θ = sup
v ̸=0

∥W 1
2 (C ⊗M)Tv∥2
∥W 1

2 Z̃Tv∥2
≤ ∥W 1

2 (C ⊗M)T ∥2
σmin(W

1
2 Z̃T )

,

from which we bound the numerator and the denominator separately. First, for the
numerator

∥W 1
2 (C ⊗M)T ∥2 = ∥(D− 1

2 ⊗M− 1
2

γ )(CT ⊗MT )∥2
= ∥(D− 1

2CT )⊗ (M− 1
2

γ MT )∥2
= ∥D− 1

2CT ∥2 · ∥M− 1
2

γ MT ∥2.

Also, note that simple calculation yields ∥D− 1
2CT ∥2 · ∥M− 1

2
γ MT ∥2 ≤

√
2√

1+γ
∥M 1

2 ∥2,
so that the numerator satisfies

∥W 1
2 (C ⊗M)T ∥2 ≤

√
2√

1 + γ
∥M 1

2 ∥2.

For the denominator, using the result from the previous lemma, we have

σmin(W
1
2 Z̃T ) = σmin(Z̃W

1
2 ) ≥

(
1− 1

µ

)
τ√
β
σmin(M

1
2 ).

Combining the bounds for the numerator and denominator,

θ ≤
√
2√

1+γ
∥M 1

2 ∥2(
1− 1

µ

)
τ√
β
σmin(M

1
2 )

=

√
2β

√
1 + γ

(
1− 1

µ

)
τ
· σmax(M

1
2 )

σmin(M
1
2 )

=

√
2β

√
1 + γ

(
1− 1

µ

)
τ
κ(M

1
2 ),

16



thereby completing the proof of the theorem.
Note that the bound on θ implies that, for sufficiently large τ (e.g., τ ≳

√
β κ(M)1/2),

we have θ < 1; hence S̄ and S̃ are spectrally close. In practice, κ(M) can be kept O(1)
via appropriate basis choices and mass lumping, so it suffices to require τ ≫ √

β.
Next, we prove the spectral equivalence between S̃ and its truncated form S̃r.

First, note from [6, Theorem 3.8], that

(1− ε1)

(
nA∑

ℓ=1

Hℓ ⊗Aℓ

)
⪯

r∑

ℓ=1

Hℓ ⊗Aℓ ⪯ (1 + ε2)

(
nA∑

ℓ=1

Hℓ ⊗Aℓ

)
,

where ε1, ε2 indicate the importance of the truncated residual; the more terms to
be calculated, the smaller ε1, ε2 we have, the tighter the preconditioned spectrum is
clustered around unity, and the more accurate and the better preconditioner we have.
Applying Lemma 4.2, and H1 ⊗M ⪰ 0, we know that

(1− ε1)Z̃ ⪯ Z̃r ⪯ (1 + ε2)Z̃.

From Lemma 4.3, we know that the generalized spectra of (S̃r, S̃) and(
(W

1
2 Z̃rW

1
2 )2, (W

1
2 Z̃W 1

2 )2
)
coincide. Therefore we get

(1− ε1)
2 ≤ λ(S̃−1S̃r) ≤ (1 + ε2)

2.

This establishes the spectral equivalence of S̃r and S̃.
Finally, we proceed to establish the spectral equivalence between the truncated

preconditioner S̃r and the hierarchical symmetric block Gauss-Seidel approximation
S̃hGS-PINT. To this end, following the idea from [6], we can rewrite it as Hℓ =
Lℓ + LT

ℓ , ℓ = 2, 3, . . . , nA, and matrices Lℓ have at most one nonzero entry per row
and per column.

Now, define

X1 = INt
⊗
(
H1 ⊗ (1 + τ

√
1 + γ

β
)M + τA1

)

Xr = INt ⊗
(

r∑

ℓ=2

Lℓ ⊗Aℓ

)
, r = 2, 3, . . . nA,

so we know Z̃hGS-PINT = (X1 +Xr)X
−1
1 (X1 +XT

r ) = Z̃r +XrX
−1
1 XT

r , the Rayleigh
quotient

vT Z̃hGS-PINTv

vT Z̃rv
= 1 +

vTXrX
−1
1 XT

r v

vT (X1 +Xr +XT
r )v︸ ︷︷ ︸

ζ

.

Let u = X
1
2
1 v; then

ζ(u) =
uTY Y Tu

uT (I + Y + Y T )u
,

where Y = X
− 1

2
1 XrX

− 1
2

1 = INt ⊗ (
∑r

ℓ=2 Lℓ ⊗ Aℓ), and

Aℓ =

(
(I + τ

√
1 + γ

β
)M + τA1

)− 1
2

Aℓ

(
(I + τ

√
1 + γ

β
)M + τA1

)− 1
2

.
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Hence,

ζ(u) ≤ max
u̸=0

uTY Y Tu

uTu
·max
u̸=0

uTu

uT (I + Y + Y T )u
=

σ2
max(Y )

λmin (I + Y + Y T )
. (4.5)

The following result holds.
Lemma 4.8. Define

∆r :=
r∑

ℓ=2

∥Hℓ∥2 ρℓ, ρℓ := ∥Aℓ∥2,

where

Aℓ :=
(
(I + τ

√
1+γ
β )M + τA1

)− 1
2

Aℓ

(
(I + τ

√
1+γ
β )M + τA1

)− 1
2

.

Let

Y := X
−1/2
1 XrX

−1/2
1 = INt

⊗
( r∑

ℓ=2

Lℓ⊗Aℓ

)
, E := Y +Y ⊤ = INt

⊗
( r∑

ℓ=2

Hℓ⊗Aℓ

)
,

with Hℓ = Lℓ + L⊤
ℓ . Then

λmin

(
I+Y+Y ⊤) ≥ 1−∆r, σmax(Y ) ≤

r∑

ℓ=2

∥Lℓ∥2 ρℓ ≤ ∆r, and ρℓ ≤ ∥
√
θℓ κℓ∥L∞(Ω)

kmin
,

where σmax(·) denotes the largest singular values.
Proof. Using

I + Y + Y ⊤ = X
−1/2
1

(
X1 + INt

⊗
r∑

ℓ=2

Hℓ ⊗Aℓ

)
X

−1/2
1 = X

−1/2
1 Z̄rX

−1/2
1 ,

the spectrum of I + Y + Y ⊤ coincides with the generalized spectrum of the pair
(Z̄r, X1). Since E is symmetric, λmin(I + E) ≥ 1− ∥E∥2. By the Kronecker product
norm rule and the triangle inequality,

∥E∥2 =
∥∥∥INt ⊗ (

r∑

ℓ=2

Hℓ ⊗ Aℓ)
∥∥∥
2
≤

r∑

ℓ=2

∥Hℓ∥2 ∥Aℓ∥2 =

r∑

ℓ=2

∥Hℓ∥2 ρℓ = ∆r,

which yields λmin(I + Y + Y ⊤) ≥ 1−∆r.
Similarly,

∥Y ∥2 =
∥∥∥INt

⊗
r∑

ℓ=2

Lℓ ⊗ Aℓ

∥∥∥
2
≤

r∑

ℓ=2

∥Lℓ∥2 ρℓ.

Since Hℓ = Lℓ + L⊤
ℓ and each Lℓ has at most one nonzero per row and per column,

we have ∥Lℓ∥2 ≤ ∥Hℓ∥2. Hence σmax(Y ) = ∥Y ∥2 ≤ ∆r.
For the explicit bound on ρℓ, recall that ρℓ = ∥Aℓ∥2 is the maximum eigenvalue of

the generalized eigenvalue problem Aℓv = λKv, where K = (I + τ
√

1+γ
β )M + τA1.
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In terms of the associated finite element function vh, the Rayleigh quotient is given
by

v⊤Aℓv

v⊤Kv
=

∫

Ω

aℓ |∇vh|2 dx
∫

Ω

(
(1 + τ

√
1+γ
β )|vh|2 + τa0 |∇vh|2

)
dx

.

Since the mass term is non-negative, we can bound this ratio by neglecting the L2-term
in the denominator:

v⊤Aℓv

v⊤Kv
≤

∫

Ω

aℓ |∇vh|2 dx

τ

∫

Ω

a0 |∇vh|2 dx
≤ 1

τ

∥
√
θℓ κℓ∥L∞(Ω)

kmin
,

and taking the supremum gives the stated bound on ρℓ; substituting it into ∥Y ∥2
yields the last inequality.

Observe from above that, with ∆r < 1,

ζ(v) =
v⊤Y Y ⊤v

v⊤(I + Y + Y ⊤)v
≤ σ2

max(Y )

λmin(I + Y + Y ⊤)
≤ ∆ 2

r

1−∆r
.

Consequently,

1 ≤ v⊤ZhGS−PINTv

v⊤Z̄rv
≤ 1 +

∆ 2
r

1−∆r
.

From Lemma 4.3, we know that the generalized spectra of (S̃hGS-PINT, S̃r) and(
(W

1
2ZhGS-PINTW

1
2 )2, (W

1
2 Z̃rW

1
2 )2
)
coincide. Therefore we get

1 ≤ λ(S̃−1
r S̃hGS-PINT) ≤ (1 +

∆ 2
r

1−∆r
)2.

Corollary 4.9 (Steady-State Case). Since the steady-state optimal control
problem corresponds to the special case Nt = 1 of the time-dependent formulation,
all preceding results apply directly with the simplified notation. The spectral equiva-
lence chain for the steady-state Schur complement preconditioner is

Sexact ∼ S ∼ Sr ∼ ShGS,

where Sexact is defined in (2.17), S in (2.18), and

Sr = ZrM−1
γ Z⊤

r , Zr =
r∑

ℓ=1

Hℓ ⊗ Ãℓ,

with Ã1 = A1+
√

1+γ
β M and Ãℓ = Aℓ for ℓ = 2, . . . , r. When r = 1, Sr reduces to the

mean-based preconditioner, and when r = nA, it recovers the full operator S. Finally,
ShGS represents the computationally feasible approximation of Sr in which the linear
systems Zrx = b are solved approximately via the hierarchical Gauss-Seidel method
(Algorithm 1), as implemented in Algorithm 2–3.
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5. Numerical experiments. This section validates the theoretical findings of
Sections 2–3 through comprehensive numerical experiments. We pursue two primary
objectives: (i) verifying the mesh-independence and spectral bounds established in
the preceding sections, and (ii) demonstrating the computational efficiency of the
proposed hierarchical Gauss-Seidel (hGS) preconditioner across varying truncation
strategies. Experiments are presented for both steady-state problems (Section 5.1)
and time-dependent problems (Section 5.2). The numerical experiments were per-
formed on a system running AlmaLinux-9 with 40GB RAM, and the proposed algo-
rithms were implemented using Matlab 23.2.

The random input k is characterized by the covariance function (2.2)–(2.3),

Ck(x, y) = σ2
k exp

(
−|x1 − y1|

ℓ1
− |x2 − y2|

ℓ2

)
∀(x, y) ∈ [−1, 1]2,

where σk is the variance coefficient, determining the randomness of the input. In
our simulations, we set the correlation lengths as ℓ1 = ℓ2 = 1 and the mean of the
data as E[k] = 1. For gPC setting in (2.9), we consider the case of the log-normal
distribution with Hermite polynomials. This problem has been extensively studied
in [19]. Also, we used γ = 1 in both cases, which means we only consider the case
with standard deviation. To discretize the spatial domain, we implemented our code
based on IFISS 3.7 [23], using Q1 approximation. For temporal discretization, we
apply the all-at-once technique proposed in [20] and set the terminal time as T = 1.
In all numerical experiments, the spatial mesh size h and the time step τ are chosen
as 2−i, with i = 4, 5, 6, 7. We solve the linear systems (2.15) and (3.8) using the
preconditioners given by (2.16) and (3.9), respectively, employing the flexible GMRES
method (without restarting) [22]. The stopping criterion is defined in terms of the
relative residual ∥rk∥/∥b∥, with thresholds 10−8 for the steady-state experiments and
10−6 or 10−4 for the time-dependent runs, where rk denotes the residual at iteration
k and b is the right-hand side vector. To assess the effectiveness of the hierarchical
preconditioning strategy, we systematically compare three truncation settings for the
(3,3)-block preconditioner: nτ = 1 (mean-based approximation), nτ = mξ + 1 (hGS
truncated at the first-order stochastic terms), and nτ = nA (full expansion retaining
all cijk coefficients). Both iteration counts and computational times (in seconds) are
reported for each configuration. To verify the efficiency of the hierarchical Gauss-
Seidel method, we compare both iteration counts and computational costs under
different truncation settings: nτ = 1, mξ + 1, and nξ.

We consider homogeneous Dirichlet conditions, corresponding to Example 2 in [9,
Chapter 5]. This example is defined on a square domain Ω□ with a discontinuous
target function and inconsistent boundary data

yd =

{
1 in Ω1 := [−1, 0]2,

0 in Ω\Ω1.
(5.1)

We subsequently present numerical experiments for both steady-state and time-dependent
problems to illustrate and verify the efficiency of our proposed hGS method.

Here are some details about the implementation for preconditioners (2.16), (3.9).
Since time-dependent problems can be seen as a series of steady-state problems, and
also because of the diagonal structure of matrix D and matrix INt

, we can just focus
on the steady-state preconditioner.

The practical implementation of the preconditioner P in (2.16) involves differ-
ent strategies for its constituent blocks. For the (1,1) and (2,2) blocks, which are
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based on Kronecker products involving the mass matrix M , applying their inverses
requires solving linear systems with M . These solves are handled efficiently by either
a direct Cholesky decomposition or the iterative Chebyshev semi-iteration method
(Algorithm 5) [11, 29].

For the more complex (3,3) block, which represents the approximate Schur com-
plement S, we employ an outer iterative scheme. Specifically, we use the Precondi-
tioned Richardson method, outlined in Algorithm 6 [7, Chapter 7], where the core of
our proposalâ the hierarchical Gauss-Seidel (hGS) method from Algorithm 1 serves
as the preconditioner for each Richardson step.

Algorithm 5 Chebyshev semi-iteration for mass matrix preconditioning [11, 29]

1: Given mass matrix M , vectors b, x(0) = 0, x(−1) = 0, and parameter ω0 = 1.
2: Set λmin = 1/4, and λmax = 9/4
3: Calculate γ = (λmin + λmax)/2 and ρ = (λmax − λmin)/(λmax + λmin).
4: Set D = γ · diag(M). (a diagonal matrix)
5: for k = 0, 1, . . . , N − 1 do

6: ωk+1 = 1/

(
1− ωkρ

2

4

)

7: r(k) = b−Mx(k)

8: p(k) = D−1r(k)

9: x(k+1) = ωk+1 · (p(k) + x(k) − x(k−1)) + x(k−1)

10: end for
11: Return x = x(N).

Algorithm 6 Preconditioned Richardson iteration with hGS preconditioner

1: Given matrix Z, vector b, and initial guess x(1).
2: r(1) = b−Zx(1). (initial residual)
3: for k = 1, 2, . . . , N do
4: Solve Zz(k) = r(k). (apply Algorithm 1)
5: x(k+1) = x(k) + z(k) (update solution)
6: r(k+1) = b−Zx(k+1). (update residual)
7: end for
8: Return x(N+1)

5.1. Steady-state case. This subsection focuses on the steady-state optimal
control problem (2.5). We examine the performance of the proposed preconditioner (2.16)
under systematic variations in: (i) the variance coefficient σk (Tables 5.1–5.3), (ii) the
regularization parameter β (Table 5.4), and (iii) the spatial and stochastic discretiza-
tion levels. For each configuration, we compare three solvers for the (1,1) and (2,2)
blocks—Chebyshev semi-iteration with 5 or 10 steps (Algorithm 5) and direct Cholesky
factorization—combined with the three truncation strategies for the (3,3)-block de-
scribed above. For the (3,3)-block, we apply the Richardson iteration (Algorithm 6)
with N = 1, i.e., one application of the hGS preconditioner per outer GMRES itera-
tion. All tests use a fixed tolerance of 10−8.

Next, by fixing the parameter β, we perform further tests summarized in Ta-
bles (5.1-5.3), employing different step settings for the Chebyshev smoother and the
Cholesky decomposition for blocks (1,1) and (2,2), as well as various truncation strate-
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Table 5.1
Simulation results showing the total number of iterations from low-rank preconditioned GMRES

and the total CPU times (in seconds) using preconditioner with β = 10−4, σ = 0.01, and selected
spatial (Nh) and stochastic (Nξ) degrees of freedom

# iter(t) # iter(t) # iter(t) # iter(t)

Nξ

Nh 289(h = 1
24 ) 1089(h = 1

25 ) 4225(h = 1
26 ) 16641(h = 1

27 )

nτ 1 mξ+1 nA 1 mξ+1 nA 1 mξ+1 nA 1 mξ+1 nA

σa = 0.01

Chebyshev-5+hGS-1
(3,3) 20 32(5.7) 32(4.0) 32(5.0) 36(9.2) 35(10.0) 35(15.6) 36(23.2) 27(26.9) 27(46.5) 35(173.4) 33(144.9) 27(194.8)
(4,4) 70 32(129.1) 32(129.5) 32(182.9) 36(243.4) 35(239.1) 35(409.2) 36(752.3) 34(724.9) 34(1237.8) 35(2585.4) 33(2524.6) 33(5253.9)
(6,3) 84 32(317.5) 32(318.3) 32(403.0) 36(508.9) 35(498.2) 35(601.3) 36(1059.3) 34(864.8) 34(1632.5) 35(3099.0) 33(3798.1) 33(5630.2)
Chebyshev-10+hGS-1
(3,3) 20 26(2.8) 26(2.6) 26(4.4) 30(6.9) 29(7.1) 29(12.0) 31(20.2) 31(21.1) 31(37.6) 32(145.1) 31(130.3) 31(154.5)
(4,4) 70 26(111.7) 26(112.2) 26(153.7) 30(191.6) 29(189.0) 29(323.8) 32(550.7) 31(383.1) 31(830.2) 33(1745.9) 31(2273.0) 31(3341.3)
(6,3) 84 26(263.9) 26(266.1) 26(329.2) 30(457.7) 29(432.2) 29(504.1) 32(959.1) 31(800.4) 31(1515.3) 33(3015.1) 31(3643.9) 31(5318.7)
Cholesky+hGS-1
(3,3) 20 25(3.5) 25(4.0) 25(4.3) 29(7.4) 27(6.7) 27(10.9) 29(19.1) 29(26.5) 29(44.5) 31(143.6) 29(162.7) 29(182.9)
(4,4) 70 25(104.2) 25(107.6) 25(144.3) 29(177.3) 27(168.9) 27(283.9) 29(419.0) 29(480.8) 29(937.1) 31(2390.7) 29(2046.0) 29(3299.9)
(6,3) 84 25(245.4) 25(247.4) 25(316.8) 29(429.9) 27(393.6) 27(675.5) 29(831.9) 29(1008.3) 29(1756.8) 31(3563.3) 29(3393.6) 29(6436.3)

Table 5.2
Simulation results showing the total number of iterations from low-rank preconditioned GMRES

and the total CPU times (in seconds) using preconditioner with β = 10−4, σ = 0.1, and selected
spatial (Nh) and stochastic (Nξ) degrees of freedom

# iter(t) # iter(t) # iter(t) # iter(t)

Nξ

Nh 289(h = 1
24 ) 1089(h = 1

25 ) 4225(h = 1
26 ) 16641(h = 1

27 )

nτ 1 mξ+1 nA 1 mξ+1 nA 1 mξ+1 nA 1 mξ+1 nA

σa = 0.1

Chebyshev-5+hGS-1
(3,3) 20 39(3.6) 33(3.3) 33(3.7) 35(11.1) 35(8.7) 29(14.2) 34(29.7) 36(40.6) 35(42.3) 34(162.3) 28(84.0) 34(191.2)
(4,4) 70 41(199.9) 34(173.7) 33(136.4) 45(218.5) 35(190.5) 35(299.8) 46(841.0) 36(670.3) 35(903.4) 45(2093.8) 35(2917.1) 34(4099.5)
(6,3) 84 41(460.9) 34(238.3) 33(325.3) 45(475.0) 35(529.5) 35(610.9) 44(1332.7) 36(1028.1) 35(1708.7) 44(4940.4) 35(4008.7) 34(5843.5)
Chebyshev-10+hGS-1
(3,3) 20 34(2.8) 26(2.2) 26(3.1) 38(7.1) 30(7.0) 30(10.5) 40(25.7) 31(32.8) 31(37.8) 42(108.7) 31(86.2) 31(152.0)
(4,4) 70 36(191.4) 26(139.4) 26(114.9) 40(186.6) 30(234.7) 30(264.6) 42(488.8) 31(518.1) 31(894.2) 44(1746.1) 32(1518.3) 31(3608.8)
(6,3) 84 35(411.8) 26(193.3) 26(283.1) 40(436.9) 30(354.9) 30(558.3) 42(1221.2) 31(970.6) 31(1529.2) 43(4988.0) 32(3801.3) 31(5417.9)
Cholesky+hGS-1
(3,3) 20 33(2.6) 25(2.2) 25(3.2) 37(7.9) 27(6.9) 27(11.1) 39(28.4) 29(34.0) 29(34.8) 39(129.7) 29(103.2) 29(150.1)
(4,4) 70 35(177.5) 25(127.6) 25(177.2) 39(282.8) 29(216.6) 27(320.4) 41(603.6) 29(581.4) 29(818.1) 41(1928.1) 29(1582.8) 29(3003.8)
(6,3) 84 35(401.1) 25(332.4) 25(407.1) 39(657.8) 29(445.5) 27(665.0) 41(1156.5) 29(869.2) 29(1706.1) 41(4696.6) 29(2848.4) 29(22402.2)

gies for block (3,3) within the hGS method. The numerical experiments were con-
ducted using multiple mesh sizes and stochastic parameter configurations, with a
solver tolerance set to 10−8.

Tables 5.1–5.3 present results for β = 10−4 with σk ∈ {0.01, 0.1, 0.4}, covering
a range from near-deterministic to highly stochastic regimes. Tables 5.1–5.3 demon-
strate three key theoretical properties. First, regarding mesh independence, iteration
counts grow sub-linearly with spatial refinement for fixed stochastic dimension Nξ,
consistent with the spectral bounds established in Section 2. Second, concerning trun-
cation efficiency, the nτ = mξ + 1 strategy achieves iteration counts comparable to
the full expansion (nτ = nA) while avoiding the computational overhead of summing
over all cijk coefficients, thereby validating the hierarchical approximation framework.
Third, regarding smoother comparison, the 5-step Chebyshev semi-iteration balances
convergence rate and per-iteration cost more effectively than either the 10-step variant
or direct Cholesky factorization. Across all configurations, the nτ = mξ+1 truncation
consistently delivers performance intermediate between the mean-based approxima-
tion (nτ = 1) and the full expansion, confirming the practical value of the proposed
hierarchical preconditioning strategy.

Table 5.4 examines the sensitivity to the regularization parameter β, which bal-
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Table 5.3
Simulation results showing the total number of iterations from low-rank preconditioned GMRES

and the total CPU times (in seconds) using preconditioner with β = 10−4 , σ = 0.4, and selected
spatial (Nh) and stochastic (Nξ) degrees of freedom

# iter(t) # iter(t) # iter(t) # iter(t)

Nξ

Nh 289(h = 1
24 ) 1089(h = 1

25 ) 4225(h = 1
26 ) 16641(h = 1

27 )

nτ 1 mξ+1 nA 1 mξ+1 nA 1 mξ+1 nA 1 mξ+1 nA

σa = 0.4

Chebyshev-5+hGS-1
(3,3) 20 59(5.7) 36(3.6) 27(4.5) 84(13.3) 39(10.1) 29(13.2) 88(50.9) 38(37.8) 36(60.4) 88(398.2) 38(163.3) 28(203.0)
(4,4) 70 100(275.7) 38(198.3) 34(140.1) 112(498.4) 42(299.3) 37(316.8) 118(1792.6) 41(697.2) 36(929.6) 117(7712.6) 41(2655.2) 36(3742.7)
(6,3) 84 86(720.2) 36(414.0) 34(463.0) 96(986.0) 40(596.4) 37(624.8) 102(3051.9) 40(1452.6) 37(1838.1) 102(9946.2) 41(4576.9) 36(7289.7)
Chebyshev-10+hGS-1
(3,3) 20 69(6.4) 30(2.8) 28(3.3) 77(13.9) 33(8.2) 30(9.9) 81(50.5) 35(34.4) 31(38.1) 83(208.6) 36(148.7) 33(162.3)
(4,4) 70 92(278.4) 32(96.5) 28(125.9) 105(508.4) 36(175.3) 30(269.3) 110(1318.5) 37(781.9) 32(857.9) 110(5212.5) 38(2920.1) 33(4546.2)
(6,3) 84 79(931.3) 30(355.0) 28(411.9) 89(1373.9) 34(529.2) 30(531.0) 95(3528.4) 36(1337.8) 32(1576.4) 97(11001.9) 38(4413.7) 33(5769.8)
Cholesky+hGS-1
(3,3) 20 69(6.8) 29(3.0) 27(4.0) 77(17.5) 31(8.2) 29(11.7) 81(57.5) 33(35.2) 29(50.3) 83(279.8) 33(180.9) 31(181.8)
(4,4) 70 31(159.1) 31(156.3) 29(350.5) 105(730.2) 33(238.6) 29(331.6) 109(1903.1) 35(726.1) 31(953.3) 109(7600.0) 35(2737.8) 31(3350.7)
(6,3) 84 33(753.1) 33(353.2) 27(425.5) 89(1325.8) 33(493.8) 29(634.8) 95(3122.6) 35(1055.9) 31(1837.7) 97(10923.5) 35(4023.8) 31(6429.3)

ances the tracking term and control cost in the objective functional (2.5). As β
decreases from 10−2 to 10−5, the optimization problem becomes increasingly domi-
nated by the tracking term. The iteration counts remain remarkably stable across this
range, demonstrating that the hierarchical preconditioner effectively handles varying
parameter regimes without requiring problem-specific tuning. The nτ = mξ + 1
truncation consistently performs comparably to the full expansion while maintaining
reduced computational cost.

Table 5.4
Simulation results using the preconditioner with mξ=3 p=3, σk = 0.2, β ∈

{10−2, 10−3, 10−4, 10−5} and Nh = 1089(h = 1
25

).

# iter(t) # iter(t) # iter(t)

Nξ (3,3) 20 (4,4) 70 (6,3) 84

nτ 1 mξ+1 nA 1 mξ+1 nA 1 mξ+1 nA

Chebyshev-5+hGS-1
β = 10−2 52(10.0) 32(7.9) 30(13.5) 60(272.3) 32(149.2) 30(363.0) 56(596.9) 32(338.9) 30(626.9)
β = 10−3 52(10.3) 34(8.3) 34(15.5) 60(273.8) 35(161.7) 34(411.4) 56(594.0) 34(360.7) 34(709.7)
β = 10−4 43(11.7) 37(7.6) 35(15.6) 62(279.7) 37(172.1) 35(299.2) 58(629.0) 37(393.4) 35(731.8)
β = 10−5 41(11.2) 38(7.9) 37(17.0) 60(270.6) 38(175.9) 37(317.9) 56(589.0) 38(413.3) 38(795.5)
Chebyshev-10+hGS-1
β = 10−2 48(8.7) 30(6.1) 29(11.9) 56(420.8) 29(147.9) 29(359.7) 52(577.6) 34(370.8) 24(653.1)
β = 10−3 48(8.8) 31(6.4) 30(12.6) 56(432.3) 31(151.6) 30(406.9) 52(554.8) 31(339.6) 30(675.8)
β = 10−4 48(8.8) 30(7.1) 30(19.4) 56(419.0) 31(151.2) 30(390.6) 52(575.0) 31(339.6) 30(676.1)
β = 10−5 47(8.7) 30(7.0) 30(13.2) 54(406.4) 30(146.0) 30(383.9) 51(554.0) 30(333.0) 30(675.1)
Chol+hGS-1
β = 10−2 47(12.4) 29(6.9) 27(11.9) 55(380.1) 29(214.4) 27(354.4) 51(975.8) 29(483.9) 27(595.1)
β = 10−3 47(12.0) 29(6.4) 27(11.9) 55(396.0) 29(215.9) 27(364.5) 51(876.9) 29(455.6) 27(596.0)
β = 10−4 47(10.4) 29(7.4) 27(12.2) 55(387.9) 29(216.0) 27(343.9) 53(847.9) 29(432.8) 27(595.5)
β = 10−5 45(10.0) 29(6.8) 27(12.0) 53(369.6) 29(205.5) 27(359.3) 51(829.3) 29(438.9) 27(594.1)

5.2. Time-dependent case. This subsection evaluates the all-at-once precon-
ditioner (3.9) for time-dependent optimal control problems. The discretization results
in KKT systems of dimension Nt × Nξ × Nh, where Nt denotes the number of time
steps. We investigate the scalability with respect to: (i) mesh refinement (Table 5.5),
(ii) regularization parameter β (Table 5.6), (iii) variance coefficient σk (Table 5.7),
(iv) temporal discretization τ (Table 5.8), and (v) stochastic dimension (mξ, p) (Ta-
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ble 5.9). Based on the steady-state findings, we employ the Chebyshev-5+hGS-1
configuration unless otherwise noted, reporting results for both strict (10−6) and
moderate (10−4) tolerances to illustrate practical convergence behavior. As in the
steady-state case, we use N = 1 in the Richardson iteration (Algorithm 6) for the
(3,3)-block.

From our observations in the steady-state problem, a combination of a 5-step
Chebyshev smoother with one step of our hGS method achieves a good balance be-
tween the computational cost of matrix operations and GMRES iterations; thus, we
typically adopt this combination when testing time-dependent cases as well.

As indicated in Table 5.5, the 5-step Chebyshev smoother yields consistent itera-
tion counts compared to either the 10-step smoother or direct Cholesky decomposition.
As the spatial discretization is refined from nc = 3 to nc = 6, representing a growth
from 116,640 to 6,084,000 DoF, the iteration count for nτ = mξ+1 exhibits sub-linear
growth consistent with the near mesh-independence predicted by the spectral theory
in Section 3. The nτ = mξ + 1 truncation achieves iteration counts comparable to
the full expansion (nτ = nA) while reducing the cost of assembling and applying
the (3,3)-block preconditioner—a trade-off that becomes increasingly favorable as the
problem dimension grows.

Table 5.5
Simulation results using hGS Method with different truncation settings nA with the model with

time-dependent diffusion constraint for different tolerance and mesh size at the random setting with
mξ=3, p = 3 σk=0.2, β = 10−4 and number of steps=8 (τ = 1

23
).

nc DoF tol=10−6 tol=10−4

nτ 1 mξ+1 nA 1 mξ+1 nA

3 116,640 57(11.9) 39(8.8) 39(15.7) 41(6.8) 31(5.7) 29(8.8)
4 416,160 75(39.3) 47(29.6) 45(39.6) 55(21.7) 35(14.9) 35(24.7)
5 1,568,160 83(150.9) 53(103.3) 51(158.6) 66(90.6) 43(58.8) 39(92.1)
6 6,084,000 84(570.8) 55(383.3) 53(585.1) 68(401.4) 42(252.2) 42(424.1)

Table 5.6 examines four orders of magnitude for β, ranging from 10−2 (control-
dominant) to 10−8 (tracking-dominant). The mean-based preconditioner (nτ = 1) ex-
hibits strong dependence on β, with iteration counts decreasing as β decreases (since
smaller β yields problems dominated by the simpler tracking term). In contrast,
the nτ = mξ + 1 truncation maintains stable iteration counts across all tested val-
ues, demonstrating that the hGS preconditioner automatically adapts to the problem
structure without manual parameter tuning. This robustness confirms the theoretical
framework’s applicability across diverse parameter regimes.

Table 5.6
Simulation results using hGS Method with different truncations setting nA with the model with

time-dependent diffusion constraint for different tolerance and β at mesh size Nh = 1
25

random

setting with mξ=3, p = 3, σk=0.2, and number of steps=8 (τ = 1
23

).

β DoF tol=10−6 tol=10−4

nτ 1 mξ+1 nA 1 mξ+1 nA
10−2 1,568,160 107(206.1) 69(136.3) 69(214.8) 74(102.0) 48(70.4) 47(112.6)
10−3 1,568,160 116(164.4) 74(109.4) 74(174.6) 66(90.6) 42(60.7) 42(100.0)
10−6 1,568,160 97(137.0) 77(115.6) 77(182.5) 57(77.4) 45(65.3) 44(103.7)
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Table 5.7 explores the range σk ∈ {1%, 2%, 5%, 10%, 20%, 40%}, spanning from
nearly deterministic to highly uncertain regimes. The mean-based preconditioner
(nτ = 1) exhibits significant degradation as uncertainty increases, whereas the nτ =
mξ+1 truncation maintains stable iteration counts across the entire range. Especially
when σk increases from 20% to 40%, the mean-based preconditioner performs poorly
with a large number of iterations, but the hGS method maintains robust performance.
This robustness confirms that the hierarchical preconditioner effectively captures the
essential stochastic structure without requiring full expansion of all coupling coeffi-
cients. Table 5.8 investigates the all-at-once system scalability by varying Nt from 4

Table 5.7
Simulation results using hGS Method with different truncations setting nA with the model with

time-dependent diffusion constraint for different tolerance and σk at β = 10−4, mesh size Nh = 1
25

random setting with mξ=3, p = 3, and number of steps=8 (τ = 1
23

).

σk DoF tol=10−6 tol=10−4

nτ 1 mξ+1 nA 1 mξ+1 nA
1% 1,568,160 51(77.7) 51(85.3) 51(133.9) 43(68.6) 41(72.7) 41(112.4)
2% 1,568,160 53(80.8) 51(82.2) 51(130.0) 43(70.2) 41(71.1) 41(113.7)
5% 1,568,160 59(90.2) 51(82.1) 51(130.9) 47(78.3) 41(72.6) 41(113.1)
10% 1,568,160 65(99.2) 51(82.4) 51(130.4) 53(86.2) 42(70.6) 41(116.5)
20% 1,568,160 83(150.9) 53(103.3) 51(158.6) 66(90.6) 43(58.8) 39(92.1)
40% 1,568,160 129(200.9) 57(92.3) 51(130.5) 100(179.3) 47(82.3) 43(119.2)

to 256 (time steps τ ∈ {1/4, 1/16, 1/64, 1/256}), corresponding to total system sizes
ranging from 784,080 to over 12.5 million DoF. As the temporal resolution increases,
the coupled space-time-stochastic system grows proportionally, yet the nτ = mξ + 1
truncation maintains sub-linear iteration growth relative to system size. The compu-
tational time scales approximately linearly with DoF, confirming the efficiency of the
all-at-once preconditioner for massively coupled systems.

Table 5.8
Simulation results using hGS Method with different truncations setting nA with the model with

time-dependent diffusion constraint for different tolerance and σk at β = 10−4, mesh size Nh = 1
25

random setting with mξ = 3, p = 3, and number of steps=8 (τ = 1
23

).

τ DoF tol=10−6 tol=10−4

nτ 1 mξ+1 nA 1 mξ+1 nA
1/22 784,080 81(78.6) 51(51.1) 51(71.1) 66(53.9) 43(37.6) 42(57.2)
1/24 3,136,320 85(238.2) 55(166.4) 53(258.7) 68(174.2) 44(124.3) 43(203.7)
1/26 12,545,280 101(1029.8) 67(733.3) 65(1205.8) 78(840.5) 53(604.2) 52(1028.6)

Finally, Table 5.9 compares three gPC configurations: (mξ, p) ∈ {(3, 3), (4, 4), (6, 3)},
yielding Nξ ∈ {20, 70, 84} basis functions. Table 5.9 varies the stochastic discretiza-
tion parameters (mξ, p), exploring both the number of random variables and poly-
nomial order. As Nξ increases from 20 to 84, the iteration count for nτ = mξ + 1
grows modestly, demonstrating near-independence from the stochastic discretization
level. This behavior confirms the effectiveness of the hierarchical truncation strategy
in maintaining spectral properties across varying gPC expansion settings.

The time-dependent experiments establish that the proposed all-at-once precon-
ditioner maintains robust performance across a wide range of problem parameters
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Table 5.9
Simulation results using hGS Method with different truncations setting nA with the model with

time-dependent diffusion constraint for different tolerance and stochastic setting at β = 10−4, mesh
size Nh = 1

25
random setting with σk=0.2, and number of steps=8 (τ = 1

23
).

(mξ,P) DoF tol=10−6 tol=10−4

nτ 1 mξ+1 nA 1 mξ+1 nA
20 (3,3) 1,568,160 83(150.9) 53(103.3) 51(158.6) 66(90.6) 43(58.8) 39(92.1)
70 (4,4) 5,488,560 95(2435.3) 53(1397.4) 52(2964.7) 74(1809.2) 43(1044.9) 43(2476.2)
84 (6,3) 6,586,272 93(4092.4) 56(2670.3) 52(5207.4) 70(3059.4) 43(2107.7) 43(4413.4)

and discretization levels. Four key findings emerge from these results. First, re-
garding near mesh-independence, iteration growth remains sub-linear with spatial
refinement (Table 5.5), consistent with the spectral bounds derived in Section 4.
Second, concerning parameter robustness, the hGS method adapts automatically to
varying β (Table 5.6) and σk (Table 5.7) without manual tuning, demonstrating the
preconditioner’s insensitivity to problem-specific parameters. Third, in terms of scal-
ability, the preconditioner handles systems with over 12.5 million DoF (Table 5.8)
and high stochastic dimensions (Table 5.9) efficiently, validating the computational
feasibility for large-scale applications. Fourth, regarding truncation efficiency, the
nτ = mξ + 1 strategy consistently delivers performance comparable to the full ex-
pansion at significantly reduced cost, validating the theoretical analysis in Section 4.
These results demonstrate that the hierarchical preconditioning framework extends
seamlessly from steady-state to time-dependent problems, providing a practical and
theoretically-grounded solution for large-scale stochastic optimal control.

6. Conclusions. This paper has successfully designed, analyzed, and imple-
mented a novel hierarchical preconditioning strategy for large-scale stochastic optimal
control problems. Our approach leverages a truncated stochastic expansion within a
block-structured preconditioner for the Karush-Kuhn-Tucker (KKT) system, striking
an effective balance between computational cost and preconditioning quality. Nu-
merical results confirm that the proposed hGS method consistently outperforms both
standard mean-based preconditioners and computationally intensive full-expansion
methods across a wide range of problem parameters.

A key contribution of this work is the extension of this framework to time-
dependent problems. We developed and tested a tailored hGS preconditioner within
an all-at-once discretization scheme, demonstrating the versatility and effectiveness
of our approach for these more challenging, large-scale scenarios. Comprehensive nu-
merical experiments on benchmark problems with Dirichlet boundary conditions have
validated the robustness and numerical efficiency of the proposed algorithms. Future
research could involve extending this preconditioning framework to problems with
more complex PDE constraints, such as the Navier-Stokes equations, or investigating
its application to optimal control problems with inequality constraints.
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[14] O. Le Mâıtre and O. M. Knio, Spectral Methods for Uncertainty Quantification: With Ap-
plications to Computational Fluid Dynamics, Scientific Computation, Springer, 2010.

[15] H.-C. Lee and J. Lee, A stochastic Galerkin method for stochastic control problems, Commun.
Comput. Phys., 14 (2013), pp. 77–106, https://doi.org/10.4208/cicp.241011.150612a.

[16] G. J. Lord, C. E. Powell, and T. Shardlow, An Introduction to Computational Stochastic
PDEs, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2014.

[17] J. Mart́ınez-Frutos and F. Periago Esparza, Optimal Control of PDEs under Uncertainty:
An Introduction with Application to Optimal Shape Design of Structures, Springer Briefs
in Mathematics, Springer Cham, 2018, https://doi.org/10.1007/978-3-319-98210-6.

[18] J. W. Pearson, M. Stoll, and A. J. Wathen, Regularization-robust preconditioners for
time-dependent PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 33
(2012), pp. 1126–1152, https://doi.org/10.1137/110847949, https://doi.org/10.1137/
110847949.

[19] C. E. Powell and H. C. Elman, Block-diagonal preconditioning for spectral stochastic finite-
element systems, IMA J. Numer. Anal., 29 (2009), pp. 350–375, https://doi.org/10.

1093/imanum/drn014.
[20] T. Rees, M. Stoll, and A. Wathen, All-at-once preconditioning in pde-constrained optimiza-

tion, Kybernetika, 46 (2010), pp. 341–360.
[21] E. Rosseel and G. N. Wells, Optimal control with stochastic PDE constraints and uncertain

controls, Comput. Methods Appl. Mech. Engrg., 213–216 (2012), pp. 152–167, https:

//doi.org/10.1016/j.cma.2011.11.026.
[22] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14

(1993), pp. 461–469, https://doi.org/10.1137/0914028.
[23] D. Silvester, H. Elman, and A. Ramage, Incompressible Flow and Iterative Solver Software

(IFISS) version 3.5, September 2016, http://www.manchester.ac.uk/ifiss/.
[24] B. Soused́ık and R. G. Ghanem, Truncated hierarchical preconditioning for the stochastic

Galerkin FEM, International Journal for Uncertainty Quantification, 4 (2014), pp. 333–
348, https://doi.org/10.1615/Int.J.UncertaintyQuantification.2014007353.

[25] B. Soused́ık, R. G. Ghanem, and E. T. Phipps, Hierarchical Schur complement precondi-

27



tioner for the stochastic Galerkin finite element methods, Numerical Linear Algebra with
Applications, 21 (2014), pp. 136–151, https://doi.org/10.1002/nla.1869.

[26] H. Tiesler, R. Kirby, D. Xiu, and T. Preusser, Stochastic collocation for optimal control
problems with stochastic PDE constraints, SIAM J. Control. Optim., 50 (2012), pp. 2659–
2682, https://doi.org/10.1137/110835438.
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