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DEEP LEARNING METHODS FOR INVERSE PROBLEMS USING
CONNECTIONS BETWEEN PROXIMAL OPERATORS AND

HAMILTON–JACOBI EQUATIONS

OLUWATOSIN AKANDE∗, GABRIEL P. LANGLOIS† , AND AKWUM ONWUNTA‡

Abstract. Inverse problems are important mathematical problems that seek to recover model
parameters from noisy data. Since inverse problems are often ill-posed, they require regularization
or incorporation of prior information about the underlying model or unknown variables. Proximal
operators, ubiquitous in nonsmooth optimization, are central to this because they provide a flexible
and convenient way to encode priors and build efficient iterative algorithms. They have also recently
become key to modern machine learning methods, e.g., for plug-and-play methods for learned denois-
ers and deep neural architectures for learning priors of proximal operators. The latter was developed
partly due to recent work characterizing proximal operators of nonconvex priors as subdifferential of
convex potentials. In this work, we propose to leverage connections between proximal operators and
Hamilton–Jacobi partial differential equations (HJ PDEs) to develop novel deep learning architec-
tures for learning the prior. In contrast to other existing methods, we learn the prior directly without
recourse to inverting the prior after training. We present several numerical results that demonstrate
the efficiency of the proposed method in high dimensions.

1. Introduction. Inverse problems are ubiquitous mathematical problems that
primarily aim at recovering model parameters from noisy data. They arise in many sci-
entific and engineering applications for, e.g., recovering an image from noisy measure-
ments, deblurring, tomographic reconstruction, and compressive sensing [3, 10, 39, 4].
Since inverse problems are often ill-posed, it is essential to include regularization or
prior information about the underlying model or unknown variables. Proximal opera-
tors are central to this: they provide a flexible and computationally convenient way to
encode priors and to build efficient iterative algorithms (e.g., proximal (sub)gradients,
the alternating direction method of multipliers, and other splitting methods). More
recently, proximal operators have become key ingredients for state-of-the-art machine
learning methods, e.g., plug-and-play methods that replace explicit regularizers by
learned denoisers [38, 40], and deep neural architectures that parameterize proximal
maps or their gradients, such as learned proximal networks (LPNs) [33]. These devel-
opments have made proximal methods practical and powerful computational tools.

Formally, the proximal operator of a proper function J : Rn → R∪{+∞} is defined
via an observed data x ∈ Rn, a parameter t > 0, and the minimization problem

(1.1) S(x, t) = min
y∈Rn

{
1

2t
∥x− y∥22 + J(y)

}
.

The proximal operator proxtJ : Rn → R is the set-valued function

(1.2) proxtJ(x) = argmin
y∈Rn

{
1

2t
∥x− y∥22 + J(y)

}
.

Here, t controls the trade-off between the quadratic data-fidelity term and the prior
J . In practice one often works directly with proxtJ rather than the prior.
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The recent work of Gribonval and Nikolova [37] in nonsmooth optimization has
extended the characterization of proximal operators with convex priors to those with
nonconvex priors, showing in particular they are functions that are subdifferentials of
certain convex potentials. These properties, in particular, were used in [33] to develop
new deep learning methods, called learned proximal networks (LPNs), to learn from
data the underlying prior of a proximal operator.

The paper [37] did not, however, discuss the well-established, existing connections
between proximal operators and Hamilton–Jacobi Partial Differential Equations (HJ
PDEs) [21, 29, 23, 14, 48]. To see these connections, consider the following HJ PDE
with quadratic Hamiltonian function and whose initial data is the prior J :

(1.3)





∂S

∂t
(x, t) +

1

2
∥∇xS(x, t)∥22 = 0, x ∈ Rn × (0,+∞),

S(x, 0) = J(x), x ∈ Rn.

If J is uniformly Lipschitz continuous, then the unique viscosity solution of the HJ
PDE is given by (1.1). Moreover, at a point of differentiability x, there holds

(1.4) proxtJ(x) = x− t∇xS(x, t).

Moreover, the viscosity solution satisfies the crucial property that x 7→ 1
2 ∥x∥

2
2 −

tS(x, t) is convex; that is, when paired with (1.4), the function proxtJ(x) is obtained
from differentiating a convex function. This formally connects proximal operators
to HJ PDEs, which we emphasize was previously known and established, and the
(stronger) characterization obtained in [37]1.

In this paper, we leverage the theory of viscosity solutions of HJ PDEs to develop
novel deep learning methods to learn from data the prior function J in (1.2). To
describe our approach, consider the case when the solution (x, t) 7→ S(x, t) to the
HJ PDE (1.3) is known. (We will consider the case when only samples of it are
known in the next paragraph.) This problem was investigated in [7, 16, 17, 30, 46].
In particular, [30] showed that when x 7→ S(x, t) is uniformly Lipschitz continuous

and x 7→ 1
2 ∥x∥

2
2 − tS(x, t) is convex, there exists a prior J that can recover S(x, t)

exactly. Moreover, there is a natural candidate for the prior, obtained by reversing the
time in the HJ PDE (1.3) and using (x, t) 7→ S(x, t) as the terminal condition. The
resulting backward viscosity solution yields the prior JBVS : Rn → R which admits the
representation formula

(1.5) JBVS(y) = sup
x∈Rn

{
S(x, t)− 1

2t
∥x− y∥22

}
.

Here, J(y) ⩾ JBVS(y) for every y ∈ Rn, with JBVS(y) = J(y) whenever y = x −
t∇xS(x, t), where x is a point of differentiability of x 7→ S(x, t). Moreover,

inf
y∈Rn

{
1

2t
∥x− y∥22 + JBVS(y)

}
= S(x, t) for every x ∈ Rn.

Thus the prior JBVS recovers the function x 7→ S(x, t), although in general proxtJ
and proxtJBVS

may not agree everywhere. Nonetheless, this provides a principled way
to estimate the prior, at least when S(x, t) is known.

1To the best our knowledge, this characterization result was unknown in the theory of HJ PDEs.
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We focus in this paper on the case when x 7→ S(x, t) is unknown but have access
to some samples {xk, S(xk, t),∇xS(xk, t)}Kk=1 with t fixed. We propose to learn the

prior y 7→ JBVS(y) by leveraging the crucial fact that y 7→ JBVS(y)+
1
2 ∥y∥

2
2 is convex,

thus enabling approaches based on deep learning and convex neural networks.

Related works: Hamilton–Jacobi PDEs are important to many scientific and engi-
neering applications arising in e.g., optimal control [5, 35, 42, 50] and physics [12, 13],
inverse problems for imaging sciences [21, 26, 23, 25, 28], optimal transport [44, 47],
game theory [8, 32, 52], and machine learning [15, 53]. Recent works focus on de-
veloping specialized solution methods for solving high-dimensional HJ PDEs, using,
e.g., representation formulas or deep learning methods. These specialized methods
leverage certain properties of HJ PDEs, including stochastic aspects and representa-
tion formulas [6, 42, 29, 28], to approximate solutions to HJ PDEs more accurately
and efficiently than general-purpose methods. See, e.g., [45, 22, 27, 24, 49] for recent
works along these lines and [43] for a review of the state-of-the-art numerical methods
for HJ PDEs.

Deep learning methods have become popular for computing solutions to high-
dimensional PDEs as well as their inverse problems. They are popular because neural
networks can be trained on data to approximate high-dimensional, nonlinear functions
using efficient optimization algorithms. They have been used to approximate solutions
to PDEs without any discretization with numerical grids, and for this reason they
can overcome, or at least mitigate, the curse of dimensionality. There is a fairly
comprehensive literature on deep learning methods for solving PDEs in general, e.g.,
see [9, 20, 41].

Organization of this paper: We present background information on proximal oper-
ators, Hamilton–Jacobi equations, and convex neural networks in section 2. Next, we
discuss recent results concerning the inverse problem for Hamilton–Jacobi equations
when the solution is available, and how they relate to proximal operators and learning
priors in inverse problems, in section 3. Our main theoretical results are presented
in section 4, where we study the inverse problem for Hamilton–Jacobi equations when
only incomplete information is available about its solution. We suggest via arguments
from max-plus algebra theory for Hamilton–Jacobi PDEs how to learn from data the
solution to a certain Hamilton-Jacobi–Jacobi terminal value problem, which can then
be used as an estimate for learning the prior function in a proximal operator. We
present in section 5 some numerical experiments for learning the initial data of cer-
tain Hamilton–Jacobi PDEs using convex neural networks and the theory of inverse
Hamilton–Jacobi PDEs. Finally, we summarize our results in section 6.

2. Background. We present here some background on proximal operators, HJ
PDEs, connections between them, and convex neural networks. For comprehensive
references, we refer the reader to [11, 31, 51].

2.1. Proximal operators. Let J : Rn → R ∪ {+∞} denote a proper function
(i.e., J(x) < +∞ for some x ∈ Rn and J(x) > −∞ for every x ∈ Rn). Consider
the minimization problem (x, t) 7→ S(x, t) defined in (1.1) and its proximal operator
(x, t) 7→ proxtJ(x) defined in (1.2). We say a proper function ft : Rn → R is a
proximal operator of tJ if ft(x) ∈ proxtJ(x) for every x ∈ Rn. Gribonval and
Nikolova [37] proved that proximal operators are characterized in terms of the function
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ψ : Rn × [0,+∞) → R ∪ {+∞} defined by

(2.1) ψ(x, t) =
1

2
∥x∥22 − tS(x, t).

Theorem 2.1. A proper function ft : Rn → Rn is a proximal operator of tJ if
and only if x 7→ ψ(x, t) is proper, lower semicontinuous, and convex and ft(x) ∈
∂xψ(x, t). Moreover, ft is uniformly Lipschitz continuous with constant L > 0 if and

only if x 7→ (1− 1/L) ∥x∥22 /2 + tJ(x) is proper, lower semicontinuous and convex.

Proof. See [37, Theorem 3 and Proposition 2]

The characterization of proximal operators in Theorem 2.1 is closely related to the
concepts of semiconcave and semiconvex functions.

Definition 2.2. Let C ⊂ Rn. We say g : C → R is C-semiconcave with C ⩾ 0 if
it is continuous and

λg(x1) + (1− λ)g(x2)− g(λx1 + (1− λ)x2) ⩽ λ(1− λ)C ∥x1 − x2∥22
for every x1,x2 ∈ C such that λx1 + (1 − λ)x2 ⊂ C and λ ∈ [0, 1]. We say g is
semiconvex if −g is semiconcave.

Remark 2.1. It can be shown [11, Chapter 1] that a function g is C-semiconcave

with C ⩾ 0 if and only if x 7→ g(x) − C
2 ∥x∥22 is concave, if and only if g = g1 + g2,

where g1 is concave and g2 ∈ C2(Rn) with
∥∥∇2

xg2
∥∥
∞ ⩽ C.

Combining formula (2.1), Definition 2.2 and Remark 2.1, we find x 7→ ψ(x, t) is convex
if and only if x 7→ tS(x, t) is semiconcave. We will see later that semiconcavity is
an important concept in the theory of HJ PDEs for characterizing their generalized
solutions. But before moving on to present some background on HJ PDEs, we give
below an instructive example.

Example 2.1 (The negative absolute value prior). Let J(x) = −|x| and consider
the one-dimensional problem

S(x, t) = min
y∈R

{
1

2t
(x− y)2 − |y|

}
.

A global minimum y∗ of this problem satisfies the first-order optimality condition

0 ∈ (y∗ − x)/t− ∂|y∗| ⇐⇒ y∗ ∈





x+ t, if y∗ > 0,

[x− t, x+ t] if y∗ = 0,

x− t, if y∗ < 0.

If x > t, the only minimum is y∗ = x + t. Likewise, if x < −t, the only minimum
is y∗ = x − t. In either cases, S(x, t) = −x − t

2 . If 0 < x ⩽ t, there are two
local minimums, 0 and x + t, but the global minimum is attained at x + t and yields
S(x, t) = − t

2 −x. Likewise, if −t ⩽ x < 0, there are two local minimums, 0 and x− t,
but the global minimum is attained at x − t and yields S(x, t) = − t

2 + x. Finally,
if x = 0, there are three local minimums, −t, 0, and t. The global minimums are
attained at −t or t, yielding S(0, t) = −t/2. Hence we find

(2.2) S(x, t) = − t

2
− |x| and proxtJ(x) =





x+ t, if x > 0,

{−t, t} if x = 0,

x− t, if x < 0.
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Thus, a selection ft(x) ∈ proxtJ(x) differs only at x = 0. In any case, the function
x 7→ ψ(x, t) in Theorem 2.1 and its subdifferential x 7→ ∂xψ(x, t) are given by

ψ(x, t) =
1

2
x2 − tS(x, t) =

1

2
x2 + t|x|+ t2

2
and ∂xψ(x) =





x+ t, if x > 0,

[−t, t], if x = 0,

x− t, if x < 0.

We see that any selection ft(x) ∈ proxtJ(x) satisfies f(x) ∈ ∂ψ(x, t).

2.2. Hamilton–Jacobi Equations. In this section, we briefly review some el-
ements of the theory of HJ PDEs, including the method of characteristics, viscosity
solutions of HJ PDEs, and the Lax–Oleinik formula, and discuss how these concepts
tie together to proximal operators. The discussion is not comprehensive; see [31] and
references therein for a more detailed treatment. To ease the presentation, we consider
only the first-order HJ PDEs (1.3).

2.2.1. Characteristic equations. The characteristic equations of (1.3) are
given by the dynamical system

(2.3)





ẋ(t) = p(t),

ṗ(t) = 0,

ż(t) = 1
2 ∥p(t)∥

2
2 ,

where z(t) = S(x(t), t) and x(0) = J(x(0). Here, t 7→ p(t) is constant with p(t) ≡
p(0) ∈ Rn. The characteristic line that arises from x(0) ∈ Rn is x(t) = x(0) + tp(0),

and so z(t) = z(0)− 1
2 ∥p(0)∥

2
2. Taken together, we find

S(x(t), t) = J(x(0)) +
1

2
∥p(0)∥22 .

Writing x(t) ≡ x and p(0) = ∇xS(x, t) (assuming formally that the spatial gradient
exists at x) then x(0) = x− t∇xS(x, t), and so we find the representation

(2.4) S(x, t) =
1

2t
∥∇xS(x, t)∥22 + J(x− t∇xS(x, t)).

This gives an implicit representation between S, its spatial gradient, and the initial
data J . Next, we turn to the explicit representation of solutions to (1.3).

2.2.2. Viscosity solutions and the Lax–Oleinik formula. The initial value
problem (1.3) (and HJ PDEs with general Hamiltonians) may not have a unique
generalized solution, i.e., those satisfying the HJ PDE almost everywhere along with
the initial condition S(x, 0) = J(x).

Example 2.2. Let J ≡ 0 in (1.3) and take n = 1. The corresponding HJ PDE
has infinitely many solutions: For instance, the functions S1 and S2 given by

S1(x, t) = 0, S2(x, t) =





0, if |x| ⩾ t,

x− t, if 0 ⩽ x ⩽ t,

−x− t, if −t ⩽ x ⩽ 0,

satisfy S1(x, 0) = S2(x, 0) = J(x) = 0 and both solve the corresponding HJ PDE
almost everywhere.
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The notion of viscosity solution was introduced in [19] to solve this problem.
Under appropriate conditions (see [6, 18, 19]), the viscosity solution is unique and
admits a representation formula. Specifically, for the initial value problem (1.3) with
uniformly Lipschitz continuous initial data J , the unique viscosity solution is given
by the Lax–Oleinik formula (with quadratic Hamiltonian)

(2.5) S(x, t) = inf
y∈Rn

{
1

2t
∥x− y∥22 + J(y)

}
.

The (unique) viscosity solution has two important properties. First, the function x 7→
S(x, t) is (1/t)-semiconcave. This is equivalent to requiring the function x 7→ ψ(x, t)
defined in (2.1) to be convex, exactly as stipulated in Theorem 2.1. Second, at any
point of differentiability of x 7→ S(x, t), there holds

(2.6) ∇xS(x, t) =
x− ft(x)

t
⇐⇒ ft(x) = x− t∇xS(x, t),

where ft(x) denote a global minimum in (2.5). Note that substituting this expression
in formula (2.4) obtained from the characteristic equations yields (2.5), as expected.

Example 2.3 (The negative absolute value prior, continued.). Let J(x) = −|x|
in the (one-dimensional) first-order HJ PDE (1.3). The function J is uniformly
Lipschitz continuous and, as such, the Lax–Oleinik formula S(x, t) = − t

2 − |x| is
the unique viscosity solution of the corresponding HJ PDE. Note x 7→ S(x, t) is
differentiable everywhere except at x = 0 and proxtJ(x) = x− t∇xS(x, t) everywhere
except at x = 0 (see (2.2)).

In summary, a proper function ft is a proximal operator of tJ whenever the func-
tion (x, t) 7→ S(x, t) is the viscosity solution of the HJ initial value problem (1.3).
The minimization problem underlying proxtJ(x) is exactly the Lax–Oleinik represen-
tation formula of the viscosity solution of (1.3). We will see in the next section how to
leverage these connections for learning the prior when x 7→ J(x) is not available but
(x, t) 7→ S(x, t) is available. But before proceeding, we briefly review convex neural
networks, which will be used later in this work.

2.3. Convex neural networks. Convex Neural Networks, specifically Input
Convex Neural Networks (ICNN), were introduced by [2] to allow for the efficient op-
timization of neural networks within structured prediction and reinforcement learning
tasks. The core premise of an ICNN is to constrain the network architecture such that
the output is a convex function with respect to the input.

To achieve convexity, the network typically employs a recursive structure for
k = 0, . . . , j − 1

(2.7) zk+1 = g(Wkzk +Hky + bk), f(y; θ) = zj ,

where y, zk represent the input to the network and the hidden features at layer k,
respectively, and g is the activation function. To guarantee the convexity of the out-
put with respect to the input y, specific constraints are imposed on the parameters
and the activation function, which are (i) the weights Wk, which connect the pre-
vious hidden layer to the current one, must be non-negative (Wk ⩾ 0), and (ii) the
activation function g must be convex and non-decreasing [33].

Following [33, Proposition 3.1], Fang et al. leverage the ICNN architecture and
the characterization of proximal operators to develop Learned Proximal Networks
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(LPN) for inverse problems. LPNs require stricter conditions than standard ICNNs.
While standard ICNNs often use ReLU activation, LPNs require the activation func-
tion g to be twice continuously differentiable. This smoothness is essential to ensure
that the proximal operator is the gradient of a twice continuous differentiable func-
tion [37, Theorem 2]. Consequently, LPNs typically utilize smooth activations like
the softplus function, a β−smooth approximation of ReLU [33, Section 3].

3. Connections between learning priors and the inverse problem for
Hamilton–Jacobi Equations. In this section, we discuss the inverse problem of
learning the prior in the proximal operator (1.2): given t > 0 and some function x 7→
S(x, t), assess whether there exists a a prior function J that can recover x 7→ S(x, t)
and, if so, estimate it. Due to the connections between proximal operators and HJ
Equations, as discussed in Subsections 2.1–2.2, our starting point will be to discuss
the inverse problem from the point of view of HJ Equations.

We summarize in the next subsection some of the main results for this problem,
based on the results of [30] and other related works [16, 17, 46].

3.1. Reachability and inverse problems for Hamilton–Jacobi equations.
We consider here the inverse problem associated to the HJ initial value problem (1.3):
given t > 0 and a function (x, t) 7→ S(x, t), identify the set of initial data J : Rn → R
such that the viscosity solution of (1.3) coincide with S(x, t). That is, we wish to
characterize the set

(3.1)
It(S) := {J : Rn → R is uniformly Lipschitz continuous

: S(x, t) is obtained from (1.3) at time t}.

We say the function (x, t) 7→ S(x, t) is reachable if the set It(S) is nonempty. The
main reachability result for the initial value problem (1.3) is the following:

Theorem 3.1. Suppose x 7→ S(x, t) is uniformly Lipschitz continuous. Then the
set It(S) defined in (3.1) is nonempty if and only if x 7→ tS(x, t) is semiconcave.

Proof. This follows from [30, Theorem 2.2, Theorem 6.1, and Definition 6.2].

Now, assume (x, t) 7→ S(x, t) is reachable. What can be said about the nonempty
set It(S)? Since (x, t) 7→ S(x, t) is obtained from evolving forward in time the prior
function J from 0 to t according to (1.3), a natural approach is to do the opposite:
evolve backward in time from t to 0 the function x 7→ S(x, t). That is, we consider
the terminal value problem

(3.2)





∂w

∂τ
(y, τ) +

1

2
∥∇yw(y, τ)∥22 = 0 (y, τ) ∈ Rn × [0, t),

w(y, t) = S(y, t), y ∈ Rn.

Under appropriate conditions, the terminal-value problem (3.2) has a unique viscosity
solution:

Theorem 3.2. Suppose x 7→ S(x, t) is uniformly Lipschitz continuous and semi-
concave. Then the viscosity solution of the terminal-value problem (3.2) exists, is
unique, and is given by the representation formula

(3.3) w(y, τ) = sup
x∈Rn

{
S(x, t)− 1

2τ
∥x− y∥22

}
.

Moreover, the function y 7→ τw(y, τ) is semiconvex with unit constant.
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Proof. See [7, Section 4, Equation 4.4.2] and [11, Chapter 1].

The viscosity solution of (3.2) is sometimes called the backward viscosity solution
(BVS) to distinguish it from the viscosity solution of the initial value problem (1.3).
The BVS at τ = 0 corresponds to fully evolving backward in time the function x 7→
S(x, t). In what follows, we write JBVS := w(·, 0). We can use (2.1) to write

(3.4) tJBVS(y) +
1

2
∥y∥22 = sup

x∈Rn

{⟨x,y⟩ − ψ(x, t)} .

The right hand side is the convex conjugate of x 7→ ψ(x, t) evaluated at x, which is
well-defined because x 7→ ψ(x, t) is proper, lower semicontinuous and convex.

Theorem 3.2 suggests that JBVS is an initial condition that can reach x 7→ S(x, t).
The next result stipulates that this is correct and that it is “optimal”, in the sense
that it bounds from below for any other reachable initial condition J ∈ It(S).

Theorem 3.3. Let JBVS denote the solution of the backward HJ terminal value
problem 3.2 at time τ = 0. Then J ∈ It(S) if and only if

J(y) ⩾ JBVS(y) for every y ∈ Rn, with equality for every y ∈ Xt(S), where

Xt(S) := {x− t∇xS(x, t) : x 7→ S(x, t) is differentiable at x ∈ Rn} .
Proof. See [30, Theorems 2.3 and 2.4].

Theorem 3.3 stipulates that JBVS is equal everywhere to J on the set Xt(S) and bounds
it from below elsewhere. This is a fundamental consequence of the semiconcavity of
x 7→ S(x, t), which regularizes the backward viscosity solution of (3.2). We illustrate
this below with the negative absolute value prior.

Example 3.1 (The negative absolute value prior, continued.). Let J(x) = −|x|
in the (one-dimensional) first-order HJ PDE (1.3). Recall that the unique viscosity
solution is given by the Lax–Oleinik formula S(x, t) = − t

2 − |x|. We now would like
to compute the corresponding unique backward viscosity solution to the terminal-value
problem (3.2). The solution is well-defined because x 7→ S(x, t) is uniformly Lipschitz
continuous and concave. We have

JBVS(x) = sup
y∈R

{
− t

2
− |y| − 1

2t
(x− y)2

}
= − t

2
− inf

y∈R

{
1

2t
(x− y)2 + |y|

}
.

The infimum on the right hand side corresponds to the proximal operator of the func-
tion y 7→ |y|, which is the soft-thresholding operator:

argmin
y∈R

{
1

2t
(x− y)2 + |y|

}
=





x− t, if x > t,

0, if x ∈ [−t, t],
x+ t, if x < −t.

This gives

JBVS(x) =





−x, if x > t,

− t
2 − x2

2t , if x ∈ [−t, t],
x, if x < −t.

Here, a simple calculation shows Xt(S) = (−∞,−t] ∪ [t,+∞), and we find J(x) >
JBVS(x) on (−t, t), as expected from Theorem 3.3. Moreover,

tJBVS(x) +
1

2
x2 =





1
2 (x− t)2 − t2

2 , if x > t,

− t2

2 , if x ∈ [−t, t],
1
2 (x+ t)2 − t2

2 , if x < −t,
8



and we observe x 7→ tJBVS(x) +
1
2x

2 is convex, as expected from Theorem 3.2.

The results here apply when the function x 7→ S(x, t) is known. What happens when
only a finite set of values of this function are available?

4. Learning priors and the inverse problem for Hamilton–Jacobi Equa-
tions with incomplete information. In this section, we consider the inverse prob-
lem of learning the prior in the proximal operator (1.2) with incomplete information:
given t > 0 and a set of samples {xk, S(xk, t),∇xS(xk, t)}Kk=1, estimate the prior J
that best recovers x 7→ S(x, t). Recall from Theorem 3.1 that when x 7→ S(x, t)
is uniformly Lipschitz continuous, x 7→ S(x, t) is reachable if and only if it is semi-
concave. In this case, the prior x 7→ JBVS(x) obtained from the HJ terminal value
problem (3.2) provides a prior function that recovers (x, t) 7→ S(x, t) exactly. Hence
we will focus on studying how to approximate the prior JBVS from a set of samples.

Note that if the triplet (xk, S(xk, t),∇xS(xk, t)) is known, then (i) the function
is x 7→ S(x, t) is differentiable at x and (ii) the unique minimum in the Lax–Oleinik
formula (2.5) can be represented via (2.6):

(4.1) S(xk, t) =
1

2t
∥xk − yk∥22 + J(yk), with yk = xk − t∇xS(xk, t).

Moreover, Theorem 3.3 and formula (2.1) imply J(yk) = JBVS(yk), y 7→ JBVS(y) +
1
2 ∥y∥

2
2 is convex. Thus one possible approach for estimating JBVS is to approximate

y 7→ JBVS(y) +
1
2 ∥y∥

2
2 piecewise from below at the points {yk}Kk=1.

We consider the problem of approximating JBVS piecewise from below and its
implications in subsection 4.1. This approximation problem turns out to be related
closely to max-plus algebra theory for approximating solutions to HJ PDEs [1, 34, 36];
we discuss this in subsection 4.2. We then consider in subsection 4.3 the more general
problem of learning a convex function to approximate y 7→ JBVS(y)+

1
2 ∥y∥

2
2 directly,

applying the discussions in subsection 4.1- subsection 4.2.

4.1. Piecewise approximations. We consider here piecewise approximations
of the prior y 7→ JBVS(y) using the samples {xk, S(xk, t),∇xS(xk, t)}Kk=1 and for-
mula (4.1). We consider first using a piecewise affine minorant (PAM) approximation,
and then, assuming some regularity on JBVS, using a piecewise quadratic minorant
(PQM) approximation.

4.1.1. Piecewise affine approximation. We first consider the PAM approxi-
mation of the convex function y 7→ tJBVS(y) +

1
2 ∥y∥

2
2”

(4.2) tJPAM(y) +
1

2
∥y∥22 := max

k∈{1,...,K}

{
tJBVS(yk) +

1

2
∥yk∥22 + ⟨xk,y − yk⟩

}
.

Then JPAM(y) ⩽ JBVS(y) for every y ∈ Rn, with JPAM(yk) = JBVS(yk) at each
k ∈ {1 . . . ,K}. A short calculation gives

tJPAM(y) = max
k∈{1,...,K}

{
tJBVS(yk) +

1

2
∥xk − yk∥22 −

1

2
∥xk − y∥22

}
.

How good is JPAM as initial condition for the HJ PDE (1.3)? In light of The-
orem 3.3, JPAM, unsurprisingly, cannot reconstruct x 7→ S(x, t). Indeed, a formal
calculation yields

(4.3) inf
y∈Rn

{
1

2t
∥x− y∥22 + JPAM(y)

}
=

{
S(xk, t) if x = xk, k ∈ {1, . . . ,K},
+∞, otherwise.

9



See Appendix A.1 for details. Thus approximating JBVS via its PAM approximation
recovers the samples {S(xk, t)}Kk=1 but nothing else.

4.1.2. Piecewise quadratic approximation. Here, we assume y 7→ tJBVS(y)

is semiconvex with constant 1 − α with α > 0, so that y 7→ tJBVS(y) +
1
2 ∥y∥

2
2 is

1−α strongly convex. We can then approximate this strongly convex function via its
PQMs:

tJPQM(y) +
1

2
∥y∥22 := max

k∈{1,...,K}

{
tJBVS(yk)+

1

2
∥yk∥22 + ⟨xk,y − yk⟩+

α

2
∥y − yk∥22

}
.

Then, JPQM(y) ⩽ JBVS(y) for every y ∈ Rn, with JPQM(y) = JBVS(yk) at each
k ∈ {1, . . . ,K}. Moreover, a short calculation gives
(4.4)

tJPQM(y) = max
k∈{1,...,K}

{
J(yk) +

1

2
∥xk − yk∥22 −

1

2
∥xk − y∥22 +

α

2
∥y − yk∥22

}
.

How good is JPQM as an initial condition for the HJ PDE (1.3)? Again, in
light of Theorem 3.3, JPQM cannot reconstruct x 7→ S(x, t). Nonetheless, a formal
calculation yields

(4.5) inf
y∈Rn

{
1

2t
∥x− y∥22 + JPQM(y)

}
=

1

2t
∥x− yk∥22 +

1

2tα
∥x− xk∥22

for some k ∈ {1, . . . ,K}. See Appendix A.2 for more details. Hence JPQM leads to
an approximation of (x, t) 7→ S(x, t) that is finite everywhere. In the next section,
we describe how max-plus algebra theory [1, 34, 36] can be used to quantify the
approximation errors more precisely.

4.2. Max-plus algebra theory for Hamilton–Jacobi PDEs and approx-
imation results. We consider here max-plus algebra techniques for approximating
solutions to certain HJ PDEs. Let α > 0 and let Ψ: Rn → R denote a (1 − α)-
semiconvex function obtained. Following [36, Section III], we approximate Ψ using

K vectors {pk}Kk=1 ⊂ Rn with K semiconvex functions y 7→ ⟨pk,y⟩ − 1
2 ∥y∥

2
2 and a

function a : Rn → R ∪ {+∞}:

(4.6) ΨMP(y) := max
k∈{1,...,K}

{
⟨pk,y⟩ −

1

2
∥y∥22 − a(pk)

}
.

Here, we suppose the vectors {pk}Kk=1 and p 7→ a(p) are selected so that ΨMP(y) ⩽
Ψ(y). As discussed in subsection 4.1, such a selection is possible via the affine piece-

wise quadratic minorants of the (1−α)-strongly convex function y 7→ Ψ(y)+ 1
2 ∥y∥

2
2.

Let Y denote a full dimensional compact, convex subset of Rn and consider the L∞
error

ϵ∞(Ψ,K,Y,ΨMP) := sup
y∈Y

|Ψ(y)−ΨMP(y)|.

Furthermore, we define the corresponding minimal L∞ error as

δ∞(Ψ,K,Y) = inf
ΨMP⩽Ψ

ϵ∞(Ψ,K,Y,ΨMP).
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The following result from max-plus algebra theory, proven in [36], stipulates that
whatever vectors {pk}Kk=1 and function p 7→ a(p) are used to approximate Ψ, the
minimal L∞ error scales as an inverse power law in K and the dimension n in the
limit K → +∞.

Theorem 4.1 (Gaubert et al. (2011)). Let α > 0, and let Y denote a full-
dimensional compact, convex subset of Rn. If Ψ: Rn → R is twice continuously
differentiable and 1− α semiconvex, then there exists a constant β(n) > 0 depending
only on n such that

(4.7) δ∞(Ψ,K,Y) ∼ β(n)

(
1

K

∫

Y
(det

(
∇2

yΨ(y) + In×n)
) 1

2 dy

)2/n

as K → +∞.

Thus the minimal L∞ error is Ω(1/K2/n) as K → +∞, though the error is smaller
the closer the Hessian matrix ∇2

yΨ(y) is to the identity matrix In×n.

4.3. Applications to the inverse problem for Hamilton–Jacobi Equa-
tions. We consider here the problem of quantifying approximations of the prior func-
tion y 7→ JBVS(y) when the latter is sufficiently regularized and when we have access
to the values {xk, S(xk, t),∇xS(xk, t)}Kk=1. Max-plus algebra theory provides us with
a first approximation result:

Corollary 4.2. Let t > 0 and assume tJBVS is twice continuously differentiable
and (1−α)-semiconvex with α > 0. Let Y denote a full-dimensional compact, convex
set of Rn. Then there exists a constant β(n) depending only on n such that

(4.8) δ∞(tJBVS,K,Y) ∼ β(n)

(
1

K

∫

Y
det

(
t∇2

yJBVS(y) + In×n

) 1
2 dy

)2/n

as K → +∞.

Proof. Immediate from Theorem 4.1 because JBVS satisfies all its assumptions.

Corollary 4.2 provides a lower bound for the approximation error of JBVS relative
to JPQM. Indeed, Theorem 4.1 and Corollary 4.2 and the fact that JPQM(y) ⩽
JBVS(y) for every y ∈ Rn imply

(4.9) δ∞(tJBVS,K,Y) ⩽ t sup
y∈Y

|JBVS(y)− JPQM(y)|.

Thus in this case JPQM approximates JBVS from below in Ω(1/Kn/2) as K → +∞.

We show below a similar upper bound holds using any reachable function J̃ ∈ It(S).

Theorem 4.3. Let t > 0 and assume tJBVS is twice continuously differentiable
and (1−α)-semiconvex with α > 0. Let Y denote a full-dimensional compact, convex
set of Rn and let J̃ ∈ It(S) denote a function that can can reach x 7→ S(x, t). Then

(4.10) δ∞(JBVS,K,Y) ⩽ t sup
y∈Y

|J̃(y)− JPQM(y)|.

Proof. First, note Theorem 3.3 implies J̃(y) ⩾ JBVS(y) for every y ∈ Rn, with
equality for every y ∈ Rn for which y = x− t∇xS(x, t) for some x ∈ Rn. Thus

tJ̃(y)− tJBVS(y) = (tJ̃(y)− tJPQM(y)) + (tJPQM(y)− tJBVS(y)) ⩾ 0,
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which we rearrange to get

tJBVS(y)− tJPQM(y) ⩽ tJ̃(y)− tJPQM(y).

Since the set Y is a compact and convex set, supy∈Y |tJBVS(y) − tJPQM(y)| is finite
and attained in Y, say at y∗. Combining this with the inequality above yields

t sup
y∈Y

|JBVS(y)− JPQM(y)| ⩽ tJ̃(y∗)− tJPQM(y∗) ⩽ t sup
y∈Y

|J̃(y)− JPQM(y)|.

Finally, since JBVS is twice continuously differentiable and (1 − α) semiconvex with
α > 0, we can invoke Theorem 4.1 with Ψ ≡ JBVS to get

δ∞(JBVS,K,Y) ⩽ t sup
y∈Y

|J̃(y)− JPQM(y)|,

that is, inequality (4.10) holds. This concludes the proof.

Theorem 4.3 suggests it is possible to learn JBVS via a function J̃ that is twice
continuously differentiable and (1-α)-semiconvex and assess the approximation error
using the right-hand-side (4.10) as a proxy, in particular by driving supy∈Y |J̃(y) −
JPQM(y)| to zero using sufficiently large enough data by training J̃(y) appropriately.

In the next section, we consider the problem of learning this function using deep
neural networks, specifically learned proximal networks [33], to enforce the semicon-
vexity property required for J̃ .

5. Numerical results. We evaluate Learned Proximal Networks (LPNs) for ap-
proximating the proximal operators of nonconvex and concave priors. While LPNs
[33] are theoretically grounded in convex analysis (parameterizing the proximal op-
erator as the gradient of a convex potential ψ), these experiments investigate their
behavior when trained on data generated from fundamentally nonconvex and concave
landscapes. All experiments utilize the official LPN implementation. The network is
trained via supervised learning, minimizing the mean squared error (MSE) or L1 loss
between the network output and the true value. We use an LPN with 2 layers and
256 hidden units using Softplus activation (β = 5) to ensure C2 smoothness. The
model is trained using the Adam optimizer with a starting learning rate of 10−3 and
decreased by a factor of 10−1 at every 105 epochs for a total of 5× 105 epochs.

The data generation process for all experiments is as follows: N samples (yi) are
drawn uniformly from the hypercube [−a, a]d, where a is chosen to be 4 and d is the
dimension, equal 2, 4, 8, 16, 32 and 64. N = 3×104 is chosen for d = 2, 4, N = 3×104

is chosen for d = 8, 16, and N = 4× 104 is chosen for d = 32, 64.

We also trained a second LPN to recover the prior at arbitrary points and compare
its performance to the “invert” method (find y such that fθ(y) = x) used in [33] for
recovering the prior from its proximal. Our second LPN is based on the relationship
that the non-convex prior J(x) can be approximated using the convex conjugate of
the learned potential ψ(y). Specifically, we compute:

(5.1) J(x) ≈ G(x)− 1

2
∥x∥2

where G(x) = ψ∗(x) represents the convex conjugate of the potential ψθ(y) learned
by the first LPN. We generate a new dataset {(xk, Gk)} using the trained first LPN

12



ψθ: (i) The gradients of the first network evaluated at the original sample points yi,

(5.2) xk = ∇yψθ(yi),

and (ii) the values of the Legendre transform corresponding to each point,

(5.3) Gk = ⟨xk, yi⟩ − ψθ(yi).

The network ϕG is trained to map the gradients xk to the conjugate values Gk by
minimizing the Mean Squared Error (MSE). The optimization is performed using the
Adam optimizer with the same parameters as used in the first LPN. Once the second
LPN is trained, the estimated non-convex prior Ĵ(x) is recovered via

(5.4) Ĵ(x) = ϕG(x)−
1

2
∥x∥2.

5.1. Convex prior. We will benchmark our approach with the prior J(x) =
∥x∥1. For this example, we have

argmin
y∈Rn

{
1

2t
∥x− y∥22 + ∥y∥1

}
= ∪n

j=1 argmin
yj∈R

{
1

2t
(xj − yj)

2 + |yj |
}

= ∪n
j=1





xj − t, if xj > t,

0, if xj ∈ [−t, t],
xj + t, if xj < −t.

With this, we can evaluate S(x, t) and the LPN function x 7→ Ψ(x) := 1
2 − tS(x, t).

Table 1: Mean square errors of LPN ψ and prior J with 2 layers and 256 neurons in
the convex L1 prior example.

Dimension LPN (ψ) Prior (J)

Mean Square Errors

2D 1.04E − 5 3.33E − 5
4D 2.97E − 5 2.17E − 4
8D 1.05E − 4 7.25E − 4
16D 5.27E − 3 2.11E − 3
32D 1.6E − 1 4.03E − 2
64D 2.89E − 6 2.69E − 3
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Fig. 1: The cross sections of the convex function ψ(x) for dimension 8 (top). The
bottom row compares the cross sections of the prior function from “invert LPN” (left)
and our trained second LPN method (right).

5.2. Non-convex prior.

Minplus algebra example. For this example, the prior is

J(x) = min

(
1

2σ1
∥x− µ1∥22 ,

1

2σ2
∥x− µ2∥22

)
.

We use µ1 = (1, 0, . . . , 0), µ2 = 1/
√
n, and σ1 = σ2 = 1.0.

Table 2: Mean square errors of LPN ψ and prior J with 2 layers and 256 neurons in
the min-plus example.

Dimension LPN (ψ) Prior (J)

Mean Square Errors

2D 3.33E − 6 5.73E − 7
4D 7.64E − 6 4.92E − 6
8D 3.64E − 5 1.20E − 4
16D 1.99E − 4 3.44E − 4
32D 1.16E − 3 1.33E − 3
64D 2.32E − 9 5.21E − 5
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Fig. 2: The cross sections of the convex function ψ(x) for dimension 8 (top). The
bottom row compares the cross sections of the prior function from “invert LPN” (left)
and our trained second LPN method (right).

Fig. 3: The cross sections of the convex function ψ(x) for dimension 32 (top). The
bottom row compares the cross sections of the prior function from “invert LPN” (left)
and our trained second LPN method (right)

5.3. Concave prior. For this example, we use

J(x) = −∥x∥22 /4.

This is actually challenging example because, technically, J is not uniformly Lipschitz
continuous. (Although numerically we can get around this by “Huberizing” the prior.)
We use this prior because we have an exact solution for this problem. It’s also a bit
challenging for a convex LPN network because according to the theory of HJ PDEs,
the function J + 1

4 ∥x∥
2
2 is convex, and J + 1

2 ∥x∥
2
2 is strongly convex, so an LPN

(which is not inherently S.C.) may not be able to detect the strong convexity and
makes this function more challenging to learn.

15



Table 3: Mean square errors of LPN ψ and prior J with 2 layers and 256 neurons in
the concave prior example.

Dimension LPN (ψ) Prior (J)

Mean Square Errors

2D 7.00E − 7 1.57E − 6
4D 2.74E − 5 7.70E − 5
8D 5.58E − 4 7.91E − 4
16D 3.69E − 3 3.28E − 3
32D 8.70E − 2 3.01E − 2
64D 6.23E − 6 1.87E − 3

Fig. 4: The cross sections of the prior function for 8 dimension from “invert LPN”
(left) and our trained second LPN method (right)

5.4. Negative ℓ1 norm. See Equation (5.6) for the minimum value and (5.7)
for the proximal value. For this example, we consider J(y) = −∥y∥1. Let n = 1 for
simplicity and consider the one-dimensional problem

(5.5) S(x, t) = min
y∈R

{
1

2t
(x− y)2 − |y|

}
.

The function y 7→ (x − y)2/2t − |y| is differentiable everywhere except at y = 0. A
stationary point of this function satisfies

0 ∈ y − x

t
− ∂|y| ⇐⇒ x ∈





x− t, if y < 0,

[x− t, x+ t] if y = 0,

x+ t, if y > 0.

If x > t, the only minimum is x+ t, in which case we have

S(x, t) =
1

2t
(x+ t− x)2 − |x+ t| = t

2
− (x+ t) = − t

2
− x.

If 0 < x ⩽ t, there are two local minimums, 0 and x + t, but the global minimum
is attained at x + t, again yielding S(x, t) = t

2 − x. If x = 0, we have three local
minimums: −t, 0, and t. The global minimum is attained at either −t or t, yielding
S(0, t) = − t

2 . If −t ⩽ x < 0, there are two local minimums, 0 and x − t, but the
global minimum is attained at x − t, yielding S(x, t) = − t

2 + x. If x < −t, the only
minimum is x− t, in which case we have S(x, t)− t

2 + x. Hence

(5.6) S(x, t) = − t

2
− |x|.
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In particular, its gradient in x is given by

∇xS(x, t) ∈





1 if x < 0,

[−1, 1] if x = 0,

−1 if x > 0.

Moreover,

(5.7) argmin
y∈R

{
1

2t
(x− y)2 − |y|

}
=





x− t if x < 0,

[−t, t] if x = 0,

x+ t if x > 0.

Table 4: Mean square errors of LPN ψ and prior J with 2 layers and 256 neurons in
the negative L1 norm examples.

Dimension LPN (ψ) Prior (J)

Mean Square Errors

2D 6.59E − 5 5.20E − 6
4D 3.15E − 4 3.17E − 5
8D 2.12E − 3 2.94E − 4
16D 8.01E − 3 4.49E − 2
32D 1.55E − 1 2.29E − 2
64D 6.42E − 4 4.49E − 3

Fig. 5: The cross sections of the convex function ψ(x) for dimension 4 (left) and 8
(right).

The Tables 1, 2, 3, and 4 quantify the scalability of the LPN approach across
dimensions ranging from 2D to 64D. The results indicate that the method performs
with high accuracy in lower dimensions (2D through 8D), achieving mean square
errors in the range of 10−7 to 10−4. However, performance degrades slightly as the
dimensionality increases, particularly at 16D and 32D, where the error spikes to a
range of 10−3 and 10−1. The higher dimensions did not work too well, which might
be because we did not train for long enough and also used a simple architecture
(which ought to be more intricate for the higher dimensional problems). While the
error for the recovered prior J is generally slightly higher than that of LPN ψ, this
is expected given the added complexity of recovering the non-convex, non-smooth, or
concave functions. However, the errors generally remain low, validating our method’s
effectiveness even in high-dimensional spaces.

The top rows of Figures 1,2, 3 and Figure 5 demonstrate that the LPN accurately
learns the cross sections of the convex function ψ(x) for dimension 4, 8, and 32, closely
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matching the reference function with the most significant variation in Figure 3 cor-
responding to dimension 32. The bottom row of these figures compares the “invert
LPN” (left) method and our trained second LPN method (right). It is clear that in
all cases, our direct method recovers the original non-smooth prior, as indicated by
the sharp V-shaped reconstructions in Figure 1, the non-convex prior Figures 2 and
3, and quadratic concave prior Figure 4 despite its challenging nature.

Figure 5 represents the cross-sections of the LPN value function against the
ground truth for dimensions 4 (left) and 8 (right). In both instances, the LPN-
approximation curves exhibit a tight fit to the analytical reference, capturing the
characteristic V-shape more closely and the non-smooth geometry of the underlying
function. The errors for 64 dimensions in all the examples are consistently lower than
expected. In contrast, it does not yield a good visual approximation of the cross
sections. We are unable to explain the reason for this behaviour in 64D cases yet;
however, we think it is probably due to the way we sample the hypercube.

6. Discussion. In this work, we leveraged the theory of viscosity solutions of
HJ PDEs to develop novel deep learning numerical methods to learn, from data,
the underlying prior of the proximal operator (1.2) yielding (x, t) 7→ S(x, t) defined
in (1.1). Our approach built on the existing connections between proximal operators
and HJ PDEs, crucially the fact that (x, t) 7→ S(x, t) is obtained from the solution to
an HJ PDE, and in particular on the theory for the inverse problem for HJ equations.
As discussed in section 3, the theory for the inverse problem for HJ equations show
that while there may be infinitely many priors that can recover (1.1), there is a natural
choice, obtained by reversing the time in the HJ PDE (3.2) and using the value of
the proximal operator (x, t) 7→ S(x, t) as initial condition. The resulting backward
viscosity solution yields a prior JBVS that can reconstruct the (x, t) 7→ S(x, t) and
also that is semiconvex. We considered the case where only samples of the proximal
operators and its values were available in Section section 4, and used techniques from
max-plus algebra to derive some characterizations and errors property of JBVS with
respect to convex functions approximating it from above. Finally, in section 5 we
proposed to learn the prior JBVS by training a convex neural network, specifically a
learned proximal network, on a function of the form y 7→ J̃(y) + 1

2 ∥y∥
2
2 from data

{xk, S(xk, t),∇xS(xk, t)}Kk=1 via (4.1). We presented several numerical results that
demonstrate the efficiency of our proposed method in high dimensions.

While this work focused on proximal operators, we expect our approach can be
extended to a broad class of Bregman divergences, as recent results in the theory of
inverse problems for HJ equations suggest [30]. Another potential direction would be
in the case where the value of the proximal operator (x, t) 7→ S(x, t) is known to learn
the prior J using Monte Carlo sampling strategies, as recently proposed in [49] for the
forward problem of HJ equations (i.e., learning (x, t) 7→ S(x, t) from known J). In the
longer term, it would be interesting to devise similar deep learning methods for the
inverse problem of HJ equations with possibly time- or state-dependent Hamiltonians,
relevant to optimal control problems.
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Appendix A. Calculations.

A.1. Formal calculation of (4.3). We have

inf
y∈Rn

{
1

2t
∥x− y∥22 + JPAM(y)

}
= inf

y∈Rn

{
1

2t
∥x− y∥22 +

max
k∈{1,...,K}

{
JBVS(yk) +

1

2t
∥xk − yk∥22 −

1

2t
∥xk − y∥22

}}

= max
k∈{1,...,K}

{
JBVS(yk) +

1

2t
∥xk − yk∥22 +

inf
y∈Rn

{
1

2t
∥x− y∥22 −

1

2t
∥xk − y∥22

}}

=

{
S(xk, t) if x = xk, k ∈ {1, . . . ,K},
+∞, otherwise.

A.2. Formal calculation of (4.5). Formally, we have

t∇yJPQM(y) = α(y − yk) + xk − y

for some k ∈ {1, . . . ,K}. Similarly,

ŷ = argmin
y∈Rn

{
1

2t
∥x− y∥22 + JPQM(y)

}
⇐⇒ 0 =

ŷ − x

t
+
α

t
(ŷ − yk) +

xk − ŷ

t

⇐⇒ ŷ = yk +
x− xk

α
.

In addition,

x− ŷ =
xk − (1− α)x

α
− yk =⇒ 1

2t
∥x− ŷ∥22 =

1

2tα2
∥xk − x+ α(x− yk)∥22 ,

xk − ŷ = xk − yk +
xk − x

α
,

and

JPQM(ŷ) = J(yk) +
1

2t
∥xk − yk∥22 −

1

2t
∥xk − ŷ∥22 +

α

2t
∥ŷ − yk∥22

= J(yk) +
1

2t
∥xk − yk∥22 −

1

2t

∥∥∥∥xk − yk +
xk − x

α

∥∥∥∥
2

2

+
α

2t

∥∥∥∥
x− xk

1− c

∥∥∥∥
2

2

= ⟨xk − yk,x− xk⟩/tα− 1

2tα2
∥x− xk∥22 +

α

2tα2
∥x− xk∥22

= ⟨xk − yk,x− xk⟩/tα− c

2tα2
∥x− xk∥22 .
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From this, we deduce

inf
y∈Rn

{
1

2t
∥x− y∥22 + JPQM(y)

}
=

1

2tα2
∥xk − x+ α(x− yk)∥22

+ ⟨xk − yk,x− xk⟩/tα− c

2tα2
∥x− xk∥22 ,

=
1

2t
∥x− yk∥22 +

1

2tα2
∥x− xk∥22

− ⟨x− xk,x− yk⟩/tα
+ ⟨xk − yk,x− xk⟩/tα− c

2tα2
∥x− xk∥22

=
1

2t
∥x− yk∥22 +

1

2t(α
∥x− xk∥22

− 1

tα
∥x− xk∥22

=
1

2t
∥x− yk∥22 +

1

2tα
∥x− xk∥22 ,

for some k ∈ {1, . . . ,K}.
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