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Abstract

Two algorithms are proposed, analyzed, and tested for solving continuous optimization problems with
nonlinear equality constraints. Each is an extension of a stochastic momentum-based method from the
unconstrained setting to the setting of a stochastic Newton-SQP-type algorithm for solving equality-
constrained problems. One is an extension of the heavy-ball method and the other is an extension of the
Adam optimization method. Convergence guarantees for the algorithms for the constrained setting are
provided that are on par with state-of-the-art guarantees for their unconstrained counterparts. A critical
feature of each extension is that the momentum terms are implemented with projected gradient estimates,
rather than with the gradient estimates themselves. The significant practical effect of this choice is seen
in an extensive set of numerical experiments on solving informed supervised machine learning problems.
These experiments also show benefits of employing a constrained approach to supervised machine learning
rather than a typical regularization-based approach.

1 Introduction

Algorithms based on the stochastic-gradient methodology [27, 28] have been found to be especially powerful
for solving modern-day unconstrained continuous optimization problems that arise in multiple areas, most
notably in supervised machine learning. Of the many variants of the stochastic-gradient methodology,
momentum-based approaches have been particularly popular and effective in practice. These include the
heavy-ball method [25], Adagrad [12], RMSprop [9, 30], and Adam [15]; see [3] for an overview.

The main contributions of this paper are extensions of the heavy-ball and Adam approaches from the
unconstrained setting to the setting of a stochastic Newton-SQP framework for solving nonlinear-equality-
constrained continuous optimization problems. Our approaches are inspired by the stochastic Newton-SQP
method proposed in [2] (see also [1, 8]) for solving problems with nonlinear equality constraints. We show
that our proposed methods can offer theoretical guarantees that are on par with state-of-the-art guarantees
that have been offered for the heavy-ball method and Adam in the unconstrained setting. In particular, our
analyses follow the analyses for these methods in the unconstrained setting that are presented in [10].
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†chripiermarini@gmail.com
‡yuza23@lehigh.edu
§frank.e.curtis@lehigh.edu
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Due to its more impressive practical performance, our more significant contribution in this paper is
the extension of Adam to the equality-constrained setting. A different extension of Adam to the equality-
constrained setting (without a convergence guarantee) has been proposed previously; see [21]. However,
besides the fact that we offer a theoretical convergence guarantee for it, our algorithm is unique in that
the running averages that are maintained in an Adam-based approach are taken with projected gradient
estimates rather than with gradient estimates themselves. This is also the case with our extension of the
heavy-ball method. We show in an extensive set of numerical experiments with informed supervised machine
learning test problems that our projected stochastic Adam algorithm can outperform both (a) Adam applied
to minimize a regularized objective function and (b) the projection-less extension of Adam proposed in [21].

A variant of the stochastic Newton-SQP method from [2] that employs Adagrad-type scaling has been
proposed and analyzed in [24]. However, the algorithm and analysis in this paper are distinct from those
in [24] due to the subtle, yet significant differences between convergence analyses for Adagrad- versus other
methods. As far as we are aware, ours is the first paper that offers convergence guarantees for heavy-ball-
and Adam-based stochastic Newton-SQP methods for solving nonlinear-equality-constrained problems.

1.1 Outline

The class of optimization problems of our interest and fundamental properties of the algorithms that we
propose and analyze are presented in §2. Our proposed heavy-ball- and Adam-based schemes, along with
our convergence analyses of them, are given in §3. In §4, we discuss a broad class of problems, namely,
informed supervised machine learning problems, for which the proposed algorithms are particularly well
suited. In that section we also discuss a few critical considerations for efficient implementations of the
algorithms. In §5, we present the results of a large set of experiments that demonstrate the effectiveness of
the algorithms. Finally, we provide some concluding remarks in §6.

2 Problem Formulation and Stochastic Newton-SQP Framework

Our problem class of interest is that of continuous equality-constrained optimization problems, where the
objective function f : Rn → R and constraint function c : Rn → Rm are continuously differentiable.
Our proposed algorithms are designed to solve such problems when the objective function is defined by an
expectation of a function with a random variable argument and may be nonconvex, and when the equality-
constraint function may be nonlinear. Formally, our problem class of interest can be expressed as instances
of

min
x∈Rn

f(x) subject to c(x) = 0, where f(x) = Eξ[F (x, ξ)] for all x ∈ Rn, (1)

ξ is a random variable with associated probability space (Ξ,Fξ,Pξ), F : Rn × Ξ → R, and Eξ denotes
the expected value operator with respect to the probability measure Pξ. At a given x ∈ Rn, a first-order
optimality condition for problem (1) is that there exists a Lagrange multiplier y ∈ Rm such that

∇f(x) + J(x)T y = 0 and c(x) = 0, where J := ∇cT . (2)

The first of these conditions states that the gradient ∇f(x) lies in the range space of the constraint deriva-
tive J(x)T . Due to the fundamental theorem of linear algebra, this is equivalent to the property that the
projection of the gradient ∇f(x) onto the null space of the constraint Jacobian J(x) is equal to the zero
vector. Under the assumption that the constraint Jacobian has full row rank and with P (x) denoting the
projection operator onto this null space at x, the first-order optimality conditions in (2) are equivalent to

P (x)∇f(x) = 0 and c(x) = 0, where P (x) = I − J(x)T (J(x)J(x)T )−1J(x). (3)

These are the form of the first-order optimality conditions that we employ in our analyses.
The algorithms that we propose, analyze, and test in this paper have as a basis the stochastic-gradient-

based Sequential Quadratic Programming (SQP) framework proposed and analyzed in [2] for solving equality-
constrained optimization problems. A simplified version of this method is stated as Algorithm 1. The key
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aspect of it that is distinct for the setting of constrained optimization is that each search direction is computed
to satisfy a linearization of the constraints that is defined with respect to the current iterate xk. Specifically,
given an objective gradient estimate gk ∈ Rn and a symmetric and positive-definite matrix Hk ∈ Rn×n, the
search direction dk can equivalently be defined as the solution of the quadratic optimization subproblem

min
d∈Rn

gTk d+
1
2d

THkd s.t. c(xk) + J(xk)d = 0. (4)

The linear system (5) represents the necessary and sufficient conditions for optimality for (4), so any solution
of (5) yields a solution of (4) as well as a Lagrange multiplier estimate yk. (If x ≡ xk is a point at which there
exists y such that (2) holds and gk = ∇f(xk), then a solution of (5) is (dk, yk) = (0, y).) It is well known
that if J(xk) has full row rank and since Hk is positive definite in the null space of J(xk), subproblem (4)
is feasible and has a unique globally optimal solution, which is given by the unique solution of (5).

Algorithm 1 Stochastic-Gradient-based SQP Framework [2]

Require: x1 ∈ Rn and {αk} ⊂ (0, 1]
1: for all k ∈ N do
2: compute a stochastic gradient estimate gk ≈ ∇f(xk) and choose symmetric Hk ∈ Rn×n

3: compute dk by solving [
Hk J(xk)

T

J(xk) 0

] [
dk
yk

]
= −

[
gk

c(xk)

]
(5)

4: set xk+1 ← xk + αkdk
5: end for

An algorithm that computes each search direction by solving a system of the form (5) can employ a
direct solver for symmetric indefinite linear systems. Alternatively, the search direction can be computed
using a step decomposition method. This is the approach that we specify for the methods that we propose
in this paper since the methods make use of running averages of projected gradient estimates. We close
this section with a description of the linear algebra involved in a step decomposition approach, which also
reveals the computational cost required to compute search directions in our proposed methods. Importantly,
these costs will be small when the number of equality constraints m is small, meaning that in such cases the
computational cost of each iteration will be proportional to the costs in an unconstrained context.

Suppose that, similarly as in Algorithm 1, an algorithm computes each search direction through solving[
I JT

J 0

] [
s
y

]
= −

[
q
c

]
, (6)

where I is the identity matrix and we assume that J ∈ Rm×n has full row rank. By the fundamental
theorem of linear algebra, the solution component s can be expressed as s = v + u, where v ∈ Range(JT )
and u ∈ Null(J). Considering the second block of equations, one finds that v can be computed by solving
an m-dimensional positive-definite system JJT ṽ = −c for ṽ ∈ Rm, then computing JT ṽ = v, which yields

v = −JT (JJT )−1c. (7)

The computational cost of computing v is thus O(m3 +m2n).
Now letting Z ∈ Rn×(n−m) denote an orthogonal matrix whose columns span Null(J), the first row of (6)

states u+JT y = −(q+v), so u = −Z(ZTZ)−1ZT q. However, it is not efficient to compute u in this manner
since it requires computing the null-space basis matrix Z. Fortunately, one can replace Z(ZTZ)−1ZT with
a matrix expressed in terms of J . Specifically, one finds that Z(ZTZ)−1ZT = I − JT (JJT )−1J =: P , so

u = −(I − JT (JJT )−1J)q = −Pq. (8)

In other words, u is the negative of the projection of q onto the null space of J ; recall (3). Practically
speaking, the component u can be computed by computing the matrix-vector product q̂ := Jq, solving the
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m-dimensional positive definite system JJT q = q̂ for q ∈ Rm, computing the matrix-vector product JT q,
and adding the result to −q. Thus, similar to v, the cost of computing u is O(m3 +m2n).

Through this discussion, one can observe that the solution of (6) is the same if q is replaced by Pq. This
follows since (7) reveals that q has no effect on v, and since by virtue of P being an orthogonal projection
matrix one has by (8) that u = −Pq = −P 2q. That being said, the solution of the system is clearly
affected if q is replaced by another vector not necessarily in the null space of the constraint Jacobian. These
comments reveal a critical distinction between our proposed version of Adam and that proposed in [21]. In
[21], running averages (i.e., the momentum terms) are taken with gradient vectors, whereas in our proposed
approach these running averages are taken with projected gradients. This difference is critical theoretically
and practically.

3 Stochastic Momentum-based Algorithms

In this section, we propose and analyze two new stochastic momentum-based methods for solving (1). Each
algorithm computes search direction components through the formulas (7) and (8). However, they are each
distinct in the manner that scaling and momentum are applied to the latter component when constructing
the search direction taken by the algorithm.

The stochastic nature of the algorithms means that our analysis of each of them considers a stochastic
process defined by each algorithm. In each case, let (Ω,F ,P) denote a probability space that captures the
behavior of the algorithm, which is to say that each outcome in Ω represents a possible realization of a run
of the algorithm. In addition, let E denote the expected value operator defined by the probability measure
P. The only source of randomness in each iteration is the computation of a stochastic gradient estimate.
Hence, using the notation of (1), one can consider the set of outcomes as Ω ≡ Ξ × Ξ × · · · . Let F1 be the
σ-algebra defined by the initial conditions of an algorithm, and, more generally, for all k ∈ N let Fk be the
σ-algebra generated by the initial conditions and the stochastic gradient estimators up through the end of
iteration k − 1. In this manner, one has that F1 ⊆ F2 ⊆ · · · ⊆ F and the sequence {Fk} is a filtration.

Throughout this section, we employ the shorthand notation ck := c(xk), Jk := ∇c(xk)
T , and Pk := P (xk).

3.1 Projected Stochastic Heavy-Ball SQP

We first consider an extension of the heavy-ball method to the setting of equality-constrained optimization.
Specifically, we propose Algorithm 2.

Algorithm 2 Projected Stochastic Heavy-ball SQP

Require: x1 ∈ Rn, {ρk} and {hk} with ρk ∈ (0, 1] and hk ∈ R>0 for all k ∈ N, β ∈ [0, 1), and α ∈ (0, 1]
1: set r0 ← 0 ∈ Rn

2: for all k ∈ N do
3: compute a stochastic gradient estimate gk ≈ ∇f(xk)

4: compute vk ← −ρkJT
k

(
JkJ

T
k

)−1
ck

5: compute uk ← −h−1
k Pkgk, where Pk := I − JT

k (JkJ
T
k )−1Jk

6: set rk ← βrk−1 + uk

7: set dk ← vk + Pkrk
8: set xk+1 ← xk + αdk
9: end for

For our analysis of Algorithm 2, we make the following assumption.

Assumption 3.1. There exists an open convex set X ⊆ Rn containing the iterates of any run of Algorithm 2
over which the objective function f : Rn → R is continuously differentiable and bounded below by finf ∈ R,
and over which the constraint function c : Rn → Rm is continuously differentiable and bounded in ℓ2-norm in
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the sense that there exists κc ∈ R>0 such that ∥c(x)∥2 ≤ κc for all x ∈ X . In addition, there exist constants

κ∇f ∈ R>0, κJ ∈ R>0, L∇f ∈ R>0, L̂J ∈ R>0, and σmin ∈ R>0 such that one has that

∥∇f(x)∥2 ≤ κ∇f for all x ∈ X ,
∥J(x)∥2 ≤ κJ for all x ∈ X ,

∥∇f(x)−∇f(x)∥2 ≤ L∇f∥x− x∥2 for all (x, x) ∈ X × X ,
∥J(x)− J(x)∥2 ≤ L̂J∥x− x∥2 for all (x, x) ∈ X × X ,
and σ1(J(x)) ≥ σmin for all x ∈ X ,

where σ1(·) yields the smallest singular value of its matrix argument. Furthermore,

E[Pkgk|Fk] = Pk∇f(xk) for all k ∈ N,

there exists a constant M ∈ R such that

E[∥Pk(gk −∇f(xk))∥22|Fk] ≤M2 for all k ∈ N,

and there exist pairs of constants (ρmin, ρmax) ∈ (0, 1] × (0, 1] and (hmin, hmax) ∈ R>0 × R>0 such that
ρmin ≤ ρk ≤ ρmax and hmin ≤ hk ≤ hmax for all k ∈ N.

It is well known (e.g., see [3]) that, under Assumption 3.1, one has

f(x)− f(x) ≤ ∇f(x)T (x− x) + 1
2L∇f∥x− x∥22 for all (x, x) ∈ X × X , (9)

and, using norm inequalities, there exists LJ ∈ R>0 such that

∥c(x)∥1 ≤ ∥c(x) + J(x)(x− x)∥1 + 1
2LJ∥x− x∥22 for all (x, x) ∈ X × X . (10)

Next, let us show that an important Lipschitz continuity property holds.

Lemma 3.1. There exists LP∇f ∈ R>0 such that for all (x, x) ∈ X × X one has

∥P (x)∇f(x)− P (x)∇f(x)∥2 ≤ LP∇f∥x− x∥2.

Proof. Proof. Consider arbitrary x ∈ X . Under Assumption 3.1, the pseudoinverse of J(x) is a right inverse
and J(x)† := J(x)T (J(x)J(x)T )−1, so P (x) = I − J(x)†J(x). Also, P (x) is symmetric, and it is well known
that ∥J(x)†∥2 = ∥J(x)T (J(x)J(x)T )−1∥2 ≤ 1

σmin
for any x ∈ X . Thus, for any (x, x) ∈ X × X , one has

∥P (x)− P (x)∥2 = ∥P (x)(I − P (x))− (I − P (x))P (x)∥2
= ∥P (x)T (I − P (x))T − (I − P (x))P (x)∥2
= ∥P (x)TJ(x)T (J(x)†)T − J(x)†J(x)P (x)∥2
= ∥P (x)T (J(x)− J(x))T (J(x)†)T − J(x)†(J(x)− J(x))P (x)∥2
≤ ∥P (x)∥2∥J(x)− J(x)∥2∥J(x)†∥2 + ∥J(x)†∥2∥J(x)− J(x)∥2∥P (x)∥2
≤ (∥J(x)†∥2 + ∥J(x)†∥2)∥J(x)− J(x)∥2

≤ 2L̂J

σmin
∥x− x∥2.

Therefore, for any (x, x) ∈ X × X , one has

∥P (x)∇f(x)− P (x)∇f(x)∥2 = ∥P (x)∇f(x)− P (x)∇f(x) + P (x)∇f(x)− P (x)∇f(x)∥2
≤ ∥P (x)∥2∥∇f(x)−∇f(x)∥2 + ∥P (x)− P (x)∥2∥∇f(x)∥2

≤

(
L∇f +

2L̂Jκ∇f

σmin

)
∥x− x∥2 =: LP∇f∥x− x∥2,

which completes the proof.
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Next we state a couple of bounds pertaining to finite series.

Lemma 3.2. Given β ∈ (0, 1) and K ∈ N, one has that

K−1∑
k=0

βk =
1− βK

1− β
≤ 1

1− β
,

K−1∑
k=0

βkk ≤ β

(1− β)2
, and

K−1∑
k=0

βkk2 ≤ β(1 + β)

(1− β)3
.

Proof. Proof. Each bound is straightforward to verify; e.g., for the second, see [10, Lemma B.2].

We also state the following lemma, which follows easily from our prior observations under Assumption 3.1.
Here and throughout the remainder of our analyses, we define ϕ : Rn×R>0 → R by ϕ(x, τ) = τf(x)+∥c(x)∥1.

Lemma 3.3. For all k ∈ N, it follows that

∥vk∥2 = ∥ρkJT
k (JkJ

T
k )−1ck∥2 ≤ ρkκcσ

−1
min, (11)

E[∥uk∥22|Fk] = h−2
k E[∥Pkgk∥22|Fk] ≤ h−2

k (κ2
∇f +M2). (12)

In addition, for any τ ∈ R>0, it follows for all k ∈ N that

ϕ(xk + αdk, τ)− ϕ(xk, τ) ≤ τα∇f(xk)
T dk + ∥ck + αJkdk∥1 − ∥ck∥1 + 1

2α
2(τL∇f + LJ)∥dk∥22. (13)

Proof. Proof. Consider arbitrary k ∈ N. The bound (11) (respectively, (12)) follows from the definition of
vk (respectively, uk) in the algorithm and Assumption 3.1. In addition, under Assumption 3.1, one has that

ϕ(xk + αdk, τ)− ϕ(xk, τ)

= τ(f(xk + αdk)− f(xk)) + ∥c(xk + αdk)∥1 − ∥ck∥1
≤ τ(α∇f(xk)

T dk + 1
2α

2L∇f∥dk∥22) + ∥ck + αJkdk∥1 + 1
2α

2LJ∥dk∥22 − ∥ck∥1
= τα∇f(xk)

T dk + ∥ck + αJkdk∥1 − ∥ck∥1 + 1
2α

2(τL∇f + LJ)∥dk∥22,

which completes the proof.

For our next lemmas, first observe that for all k ∈ N one has that

rk = uk + βrk−1 = uk + β(uk−1 + βrk−2) =

k−1∑
i=0

βiuk−i =

k∑
i=1

βk−iui. (14)

Lemma 3.4. For all k ∈ N, it follows that

E[∥rk∥22] ≤
κ2
∇f +M2

h2
min(1− β)2

.

Proof. Proof. Consider arbitrary k ∈ N. By (14), Jensen’s inequality, and Lemmas 3.2 and 3.3 one finds
that

E[∥rk∥22] = E

∥∥∥∥∥
k−1∑
i=0

βiuk−i

∥∥∥∥∥
2

2

 = E

(k−1∑
i=0

βi

)2 ∥∥∥∥∥
∑k−1

i=0 βiuk−i∑k−1
i=0 βi

∥∥∥∥∥
2

2


≤

(
k−1∑
i=0

βi

)2 ∑k−1
i=0 βiE[∥uk−i∥22]∑k−1

i=0 βi
=

(
k−1∑
i=0

βi

)
k−1∑
i=0

βiE[∥uk−i∥22]

≤ 1

1− β

k−1∑
i=0

βih−2
k (κ2

∇f +M2) ≤
κ2
∇f +M2

h2
min(1− β)2

,

as desired.
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Next, we bound the expected value of the inner product between the true gradient of the objective
function and the search direction in each iteration.

Lemma 3.5. For all k ∈ N, it follows that

E[∇f(xk)
T dk] ≤ −

k−1∑
i=0

βih−1
maxE[∥Pk−i∇f(xk−i)∥22]

+
ρmaxκ∇fE[∥ck∥2]

σmin
+

βLP∇fα

(1− β)2

(
ρ2maxκ

2
c(1− β)

2σ2
min

+
κ2
∇f +M2

h2
min(1− β)

)
.

Proof. Proof. Consider arbitrary k ∈ N. By the definition of dk, Pk = PT
k , and (14), one finds that

∇f(xk)
T dk = ∇f(xk)

T (vk + Pkrk)

= ∇f(xk)
T

(
vk + Pk

k−1∑
i=0

βiuk−i

)

= − ρk∇f(xk)
TJT

k (JkJ
T
k )−1ck +

k−1∑
i=0

βi∇f(xk)
TPkuk−i

= − ρk∇f(xk)
TJT

k (JkJ
T
k )−1ck

+

k−1∑
i=0

βi∇f(xk−i)
TPT

k−iuk−i +

k−1∑
i=1

βi(Pk∇f(xk)− Pk−i∇f(xk−i))
Tuk−i. (15)

With respect to the first term in (15), it follows by Assumption 3.1 and Lemma 3.3 (specifically, (11)) that

−ρk∇f(xk)
TJT

k (JkJ
T
k )−1ck ≤

ρmaxκ∇f∥ck∥2
σmin

. (16)

With respect to the second term in (15), it follows with Assumption 3.1 that for all i ∈ {0, . . . , k − 1} one
has

E[∇f(xk−i)
TPT

k−iuk−i|Fk−i] = E[−h−1
k−i∇f(xk−i)

TPT
k−iPk−igk−i|Fk−i]

= −h−1
k−i∇f(xk−i)

TPT
k−iPk−i∇f(xk−i)

= −h−1
k−i∥Pk−i∇f(xk−i)∥22 ≤ −h−1

max∥Pk−i∇f(xk−i)∥22. (17)

With respect to the third term in (15), it follows by Lemma 3.1, Jensen’s inequality, Lemma 3.3 (specifically,
inequality (11)), and vj and Pjrj being orthogonal for any j ∈ N that for all i ∈ {1, . . . , k − 1} one has

∥Pk∇f(xk)− Pk−i∇f(xk−i)∥22 ≤ L2
P∇f∥xk − xk−i∥22

= L2
P∇f

∥∥∥∥∥∥α
k−1∑

j=k−i

(vj + Pjrj)

∥∥∥∥∥∥
2

2

≤ L2
P∇f iα

2

 k−1∑
j=k−i

∥vj∥22 +
k−1∑

j=k−i

∥Pjrj∥22


≤ L2

P∇f iα
2

iρ2maxκ
2
cσ

−2
min +

k−1∑
j=k−i

∥Pjrj∥22

 . (18)

8



Consequently, along with the Cauchy-Schwarz inequality and since Young’s inequality implies that |ab| ≤
λ
2 |a|

2 + 1
2λ |b|

2 for any (a, b) ∈ R × R and λ ∈ R>0, one finds with λ = 1−β
LP∇f iα

that

k−1∑
i=1

βi(Pk∇f(xk)− Pk−i∇f(xk−i))
Tuk−i

≤
k−1∑
i=1

βi∥Pk∇f(xk)− Pk−i∇f(xk−i)∥2∥uk−i∥2

≤
k−1∑
i=1

βi

(
1− β

2LP∇f iα
∥Pk∇f(xk)− Pk−i∇f(xk−i)∥22 +

LP∇f iα

2(1− β)
∥uk−i∥22

)

≤
k−1∑
i=1

βiLP∇fα

1− β

2

iρ2maxκ
2
cσ

−2
min +

k−1∑
j=k−i

∥Pjrj∥22

+
i

2(1− β)
∥uk−i∥22

 .

Taking total expectation and using Lemma 3.2, Lemma 3.3 (specifically, (12)), and Lemma 3.4, one finds
that

E

[
k−1∑
i=1

βi(Pk∇f(xk)− Pk−i∇f(xk−i))
Tuk−i

]

≤
k−1∑
i=1

βiLP∇fα

1− β

2

iρ2maxκ
2
cσ

−2
min +

k−1∑
j=k−i

E
[
∥Pjrj∥22

]+
i

2(1− β)
E
[
∥uk−i∥22

]
≤

k−1∑
i=1

βiLP∇fαi

(
1− β

2

(
ρ2maxκ

2
cσ

−2
min +

κ2
∇f +M2

h2
min(1− β)2

)
+

κ2
∇f +M2

2h2
min(1− β)

)

= LP∇fα

(
ρ2maxκ

2
c(1− β)

2σ2
min

+
κ2
∇f +M2

h2
min(1− β)

)
k−1∑
i=1

βii ≤ βLP∇fα

(1− β)2

(
ρ2maxκ

2
c(1− β)

2σ2
min

+
κ2
∇f +M2

h2
min(1− β)

)
. (19)

Taking expectation on both sides of (15) and using (16), (17), and (19), the proof is complete.

Now we bound the expected reduction in the merit function between two consecutive iterations.

Lemma 3.6. For any τ ∈ R>0, it follows for all k ∈ N that

E[ϕ(xk+1)− ϕ(xk)]

≤ −α

(
τ

k−1∑
i=0

βih−1
maxE[∥Pk−i∇f(xk−i)∥22] +

(
1− τκ∇fρmax

σminρmin

)
ρminE[∥ck∥1]

)
+ α2C,

where C :=
βLP∇fτ

1− β

(
ρ2maxκ

2
c

2σ2
min

+
κ2
∇f +M2

h2
min(1− β)2

)
+ 1

2 (τL∇f + LJ)

(
ρ2maxκ

2
c

σ2
min

+
κ2
∇f +M2

h2
min(1− β)2

)
.

Proof. Proof. Consider arbitrary τ ∈ R>0 and k ∈ N. By Lemma 3.3, α ∈ (0, 1], ρk ∈ (0, 1], and

Jkdk = Jkvk + JkPkrk = Jkvk = −ρkJkJT
k (JkJ

T
k )−1ck = −ρkck,

one has that

ϕ(xk+1)− ϕ(xk) ≤ τα∇f(xk)
T dk + ∥ck + αJkdk∥1 − ∥ck∥1 + 1

2α
2(τL∇f + LJ)∥dk∥22

= τα∇f(xk)
T dk − αρk∥ck∥1 + 1

2α
2(τL∇f + LJ)∥dk∥22. (20)

9



With respect to the last term, it follows from Lemma 3.3, Lemma 3.4, and vTk Pkrk = 0 that

1
2α

2(τL∇f + LJ)E[∥dk∥22] = 1
2α

2(τL∇f + LJ)E[∥vk + Pkrk∥22]

≤ 1
2α

2(τL∇f + LJ)

(
ρ2maxκ

2
c

σ2
min

+
κ2
∇f +M2

h2
min(1− β)2

)
.

Now taking expectation on both sides of (20), and using Lemma 3.5 and basic norm inequalities, one finds

E[ϕ(xk+1)− ϕ(xk)]

≤ − τα

k−1∑
i=0

βih−1
maxE[∥Pk−i∇f(xk−i)∥22]− αρminE[∥ck∥1] +

ταρmaxκ∇fE[∥ck∥1]
σmin

+
βLP∇fα

2τ

(1− β)2

(
ρ2maxκ

2
c(1− β)

2σ2
min

+
κ2
∇f +M2

h2
min(1− β)

)
+ 1

2α
2(τL∇f + LJ)

(
ρ2maxκ

2
c

σ2
min

+
κ2
∇f +M2

h2
min(1− β)2

)
,

which completes the proof.

Theorem 3.1. Suppose that Assumption 3.1 holds and define

τ :=
σminρmin

σminρmin + κ∇fρmax
=⇒ 1− τκ∇fρmax

σminρmin
= τ. (21)

Then, for any K ∈ N and with C ∈ R>0 defined in Lemma 3.6, it follows that

1

K

K∑
k=1

E[h−1
max∥Pk∇f(xk)∥22 + ρmin∥ck∥1] ≤

ϕ(x1)− τfinf
ατK

+
αC

τ
. (22)

Proof. Proof. Consider arbitrary k ∈ N. Given τ defined by (21), it follows from Lemma 3.6 that

E[ϕ(xk+1)− ϕ(xk)] ≤ −ατ

(
k−1∑
i=0

βih−1
maxE[∥Pk−i∇f(xk−i)∥22] + ρminE[∥ck∥1]

)
+ α2C.

Summing this inequality over k ∈ {1, . . . ,K} and using ϕ(x) ≥ τfinf for all x ∈ X yields

1

K

(
K∑

k=1

k−1∑
i=0

βih−1
maxE[∥Pk−i∇f(xk−i)∥22] +

K∑
k=1

ρminE[∥ck∥1]

)
≤ ϕ(x1)− τfinf

ατK
+

αC

τ
. (23)

With respect to the first term in the parentheses on the left-hand side, one finds that

K∑
k=1

k−1∑
i=0

βiE[∥Pk−i∇f(xk−i)∥22] =
K∑

k=1

k∑
i=1

βk−iE[∥Pi∇f(xi)∥22]

=

K∑
k=1

E[∥Pk∇f(xk)∥22]
K−k∑
i=0

βi

=

K∑
k=1

E[∥Pk∇f(xk)∥22]
1− βK−k+1

1− β

≥
K∑

k=1

E[∥Pk∇f(xk)∥22].

This inequality, along with (23), completes the proof.
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Theorem 3.1 shows that the average expected combination of the squared norm of the projected gradient
and ℓ1-norm constraint violation over K iterations decreases to αC/τ at a rate of O(1/K). Indeed, the upper
bound on the average expected combination can be made as small as desired: with {ρk}, {hk}, and β fixed,
one can choose α small enough such that αC/τ is as small as desired, then choose K sufficiently large such
that the first term on the right-hand side of (22) is as small as desired. In addition, ρmin and hmax can be
chosen to achieve any desired balance between E[∥Pk∇f(xk)∥22] and E[∥ck∥1] in the left-hand side of (22).

3.2 Projected Stochastic Adam SQP

Next, we consider an extension of the Adam method to the setting of equality-constrained optimization.
Specifically, we propose Algorithm 3, where we note that for any equal-length real vectors a and b we
use a ◦ b to denote their component-wise product, we use e to denote a vector of all ones whose length is
determined by the context in which it appears, and for any real vector v we use diag(v) to denote a diagonal
matrix whose diagonal components are those of v (in order).

We emphasize that, like the variant of Adam that is analyzed in [10], Algorithm 3 involves a modified
bias correction term in order to guarantee that a certain step size sequence (see the sequences {ηk} and {αk}
below) is monotonically nondecreasing as k → ∞. As discussed in [10], this variant for the unconstrained
setting regularly yields comparable performance with the original Adam method. We borrow this modified
bias correction idea in order to model our analysis on that in [10].

Algorithm 3 Projected Stochastic Adam SQP

Require: x1 ∈ Rn, {ρk} and {hk} with ρk ∈ (0, 1] and hk ∈ R>0 for all k ∈ N, β1 ∈ [0, 1), β2 ∈ (β1, 1),
α ∈ (0, 1], and ϵ ∈ R>0

1: set r0 ← 0 ∈ Rn

2: set s0 ← 0 ∈ Rn

3: for all k ∈ N do
4: compute a stochastic gradient estimate gk ≈ ∇f(xk)

5: compute vk ← −ρkJT
k

(
JkJ

T
k

)−1
ck

6: compute uk ← −h−1
k Pkgk, where Pk := I − JT

k

(
JkJ

T
k

)−1
Jk

7: set rk ← β1rk−1 + uk (first momentum)
8: set sk ← β2sk−1 + uk ◦ uk (second momentum)

9: set ηk ←
(1−β1)

√
1−βk

2√
1−β2

(bias correction)

10: set dk ← vk + ηkPk diag(sk + ϵe)−1/2rk
11: Set xk+1 ← xk + αdk
12: end for

For our analysis of Algorithm 3, we make the following assumption.

Assumption 3.2. With respect to Algorithm 3, the conditions of Assumption 3.1 hold and, in addition,

∥uk∥∞ ≡ ∥h−1
k Pkgk∥∞ ≤

√
M2 + κ2

∇f

h2
k

− ϵ for all k ∈ N.

Before commencing our analysis, let us define a few quantities to simplify our expressions. Let us also
note that for any vector defined by the algorithm, we use a second subscript to denote a component index;
e.g., for any (k, i) we use sk,i to denote the ith component of the vector sk. Similarly, for the product Pkgk,
we use [Pkgk]i to denote its ith component. For the sake of simplicity, let us define the step size for uk as

αk := αηk =
α(1− β1)

√
1− βk

2√
1− β2

for all k ∈ N,

11



and observe that it is nondecreasing as k →∞. In addition, let us define for all k ∈ N the vectors tk and t̃k,
where for all i ∈ {1, . . . , n} the ith component of each vector is given by

tk,i :=
rk,i√
sk,i + ϵ

, and t̃k,i :=
uk,i√
sk,i + ϵ

= − [Pkgk]i
hk
√
sk,i + ϵ

,

respectively. Let us also note that for all (k, i) and j ∈ {1, . . . , k} one has that

sk,i =

k∑
l=1

βk−l
2 h−2

l [Plgl]
2
i = βj

2sk−j,i +

k∑
l=k−j+1

βk−l
2 h−2

l [Plgl]
2
i ,

and for all (k, i) and j ∈ {1, . . . , k} let us define the related quantity

s̃k,j,i = βj
2sk−j,i + E

 k∑
l=k−j+1

βk−l
2 h−2

l [Plgl]
2
i

∣∣∣∣∣Fk−j+1

 . (24)

Also, similarly as for (14) for the heavy-ball method, one finds here for all k ∈ N that

rk = uk + β1rk−1 = uk + β1(uk−1 + β1rk−2) =

k−1∑
i=0

βi
1uk−i =

k∑
i=1

βk−i
1 ui. (25)

We begin with two technical lemmas whose proofs can be found in [10].

Lemma 3.7. Let (β1, β2, ϵ) be given by Algorithm 3 and let {ak} be any sequence of real numbers. For any

k ∈ N, with bk :=
∑k

j=1 β
k−j
2 a2j and qk :=

∑k
j=1 β

k−j
1 aj, one has that

k∑
j=1

q2j
bj + ϵ

≤ 1

(1− β1)(1− β1

β2
)

(
log

(
1 +

bk
ϵ

)
− k log(β2)

)

and

k∑
j=1

a2j
bj + ϵ

≤ log

(
1 +

bk
ϵ

)
− k log(β2).

Proof. Proof. See [10, Lemmas 5.2 and A.2].

Lemma 3.8. For any k ∈ N and β ∈ (0, 1), it follows that

k−1∑
j=0

βj
√
j + 1 ≤ 2

(1− β)3/2
and

k−1∑
j=0

βj
√
j(j + 1) ≤ 4β

(1− β)5/2
.

Proof. Proof. See [10, Lemmas A.3 and A.4].

Now, similarly as in Lemma 3.5 for the heavy-ball method in the previous subsection, we bound the
expected inner product between the true gradient of the objective function and the search direction in each
iteration.

Lemma 3.9. For all k ∈ N, it follows that

E[∇f(xk)
T dk]

≤ − ηk
2hmax

k−1∑
j=0

βj
1E[(Pk−j∇f(xk−j))

T diag(s̃k,j+1 + ϵe)−1/2Pk−j∇f(xk−j)]

12



+
ρmaxκ∇fE[∥ck∥2]

σmin
+

3ηk
√

M2 + κ2
∇fhmax

hmin

√
1− β1

k−1∑
j=0

(
β1

β2

)j√
j + 1E[∥t̃k−j∥22]

+ ηkL
2
P∇fα

2ρ2maxκ
2
cσ

−2
min

√
1− β1

4
√
M2 + κ2

∇f

β1(1 + β1)

(1− β1)3

+ ηkL
2
P∇fα

2
k

√
1− β1

4
√
M2 + κ2

∇f

k−1∑
j=1

E[∥tk−j∥22]
k−1∑
l=j

βl
1

√
l.

Proof. Proof. Consider arbitrary k ∈ N. By the definition of dk, Pk = PT
k , and (25), one finds that

∇f(xk)
T dk = ∇f(xk)

T (vk + ηkPk diag(sk + ϵe)−1/2rk)

= ∇f(xk)
T vk − ηk

k−1∑
j=0

βj
1h

−1
k−j∇f(xk)

TPk diag(sk + ϵe)−1/2Pk−jgk−j

= ∇f(xk)
T vk︸ ︷︷ ︸

A

− ηk

k−1∑
j=0

βj
1h

−1
k−j(Pk−j∇f(xk−j))

T diag(sk + ϵe)−1/2Pk−jgk−j︸ ︷︷ ︸
B

− ηk

k−1∑
j=0

βj
1h

−1
k−j (Pk∇f(xk)− Pk−j∇f(xk−j))

T
diag(sk + ϵe)−1/2Pk−jgk−j︸ ︷︷ ︸

C

. (26)

Term A satisfies (16). With respect to term B, one finds for any j ∈ {1, . . . , k − 1} that

(Pk−j∇f(xk−j))
T diag(sk + ϵe)−1/2Pk−jgk−j = (Pk−j∇f(xk−j))

T diag(s̃k,j+1 + ϵe)−1/2Pk−jgk−j︸ ︷︷ ︸
B1

+(Pk−j∇f(xk−j))
T
(
diag(sk + ϵe)−1/2 − diag(s̃k,j+1 + ϵe)−1/2

)
Pk−jgk−j︸ ︷︷ ︸

B2

.

Thus, by the definition (24), one finds for B1 that

E[B1] = E[E[B1|Fk−j ]] = E[(Pk−j∇f(xk−j))
T diag(s̃k,j+1 + ϵe)−1/2Pk−j∇f(xk−j)],

and at the same time one finds for B2 that, from [10, Pages 19–20, Eq(A.27)] and Assumption 3.2, one has

E[|B2|] ≤
1

2
E[(Pk−j∇f(xk−j))

T diag(s̃k,j+1 + ϵe)−1/2Pk−j∇f(xk−j)]

+
2
√
M2 + κ2

∇f

hmin

√
1− β1β

j
2

√
j + 1E[(Pk−jgk−j)

T diag(sk−j + ϵe)−1Pk−jgk−j ]

=
1

2
E[(Pk−j∇f(xk−j))

T diag(s̃k,j+1 + ϵe)−1/2Pk−j∇f(xk−j)]

+
2
√
M2 + κ2

∇f

hmin

√
1− β1β

j
2

√
j + 1h2

k−jE[∥t̃k−j∥22].

From the definitions of B1 and B2, one finds that

B = ηk

k−1∑
j=0

βj
1h

−1
k−j(B1 +B2) ≥ ηk

k−1∑
j=0

βj
1h

−1
k−j(B1 − |B2|),
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so taking expectation and employing the above equation for E[B1] and bound for E[|B2|] yields

E[B] ≥ ηk

k−1∑
j=0

βj
1h

−1
k−j(E[B1]− E[|B2|])

≥ ηk
2hmax

k−1∑
j=0

βj
1E[(Pk−j∇f(xk−j))

T diag(s̃k,j+1 + ϵe)−1/2Pk−j∇f(xk−j)]

−
2ηk
√
M2 + κ2

∇fhmax

hmin

√
1− β1

k−1∑
j=0

(
β1

β2

)j√
j + 1E[∥t̃k−j∥22]. (27)

Now with respect to term C in (26), with Lemma 3.1, Jensen’s inequality, Lemma 3.3 (specifically, inequal-
ity (11)), vk−j and Pk−jtk−j being orthogonal for any k − l ∈ N, and the fact that {αk} is nondecreasing,
one finds (similarly as in (18)) that for any j ∈ {1, . . . , k − 1} one has

∥Pk∇f(xk)− Pk−j∇f(xk−j)∥22 ≤ L2
P∇f∥xk − xk−j∥22

= L2
P∇f

∥∥∥∥∥
j∑

l=1

(αvk−l + αk−lPk−ltk−l)

∥∥∥∥∥
2

2

≤ L2
P∇f j

(
j∑

l=1

∥αvk−l∥22 +
j∑

l=1

∥αk−lPk−ltk−l∥22

)

≤ L2
P∇f j

2α2ρ2maxκ
2
cσ

−2
min + L2

P∇f jα
2
k−1

j∑
l=1

∥tk−l∥22

≤ L2
P∇f j

2α2ρ2maxκ
2
cσ

−2
min + L2

P∇f jα
2
k

j∑
l=1

∥tk−l∥22.

At the same time, for the vector diag(sk + ϵe)−1/2Pk−jgk−j , one finds for all i ∈ {1, . . . , n} that

ϵ+ sk,i = ϵ+ βj
2sk−j,i +

k∑
l=k−j+1

h−2
l βk−l

2 (Plgl)
2
i ≥ ϵ+ βj

2sk−j,i ≥ βj
2(ϵ+ sk−j,i)

=⇒ (Pk−jgk−j)
2
i

ϵ+ sk,i
≤ 1

βj
2

(Pk−jgk−j)
2
i

ϵ+ sk−j,i
=

h2
k−j

βj
2

(Pk−jgk−j)
2
i

h2
k−j(ϵ+ sk−j,i)

=
h2
k−j

βj
2

t̃2k−j,i.

Thus, along with the Cauchy-Schwarz inequality and since Young’s inequality implies that |ab| ≤ λ
2 |a|

2 +
1
2λ |b|

2 for any (a, b) ∈ R × R and λ ∈ R>0, one finds with λ = hmin

√
1−β1

2
√

M2+κ2
∇f

√
j+1

that

(Pk∇f(xk)− Pk−j∇f(xk−j))
T diag(sk + ϵe)−1/2Pk−jgk−j

≤ ∥Pk∇f(xk)− Pk−j∇f(xk−j)∥2∥ diag(sk + ϵe)−1/2Pk−jgk−j∥2

≤ hmin

√
1− β1

4
√
M2 + κ2

∇f

√
j + 1

∥Pk∇f(xk)− Pk−j∇f(xk−j)∥22

+

√
M2 + κ2

∇f

√
j + 1

hmin

√
1− β1

∥ diag(sk + ϵe)−1/2Pk−jgk−j∥22

≤ hmin

√
1− β1

4
√
M2 + κ2

∇f

√
j + 1

(
L2
P∇f j

2α2ρ2maxκ
2
cσ

−2
min + L2

P∇f jα
2
k

j∑
l=1

∥tk−l∥22

)
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+

√
M2 + κ2

∇f

√
j + 1

hmin

√
1− β1

h2
k−j

βj
2

∥t̃k−j∥22.

Thus, using Lemma 3.2, one finds that

E[−C]

≤ E[|C|] = ηk

k−1∑
j=0

βj
1h

−1
k−jE

[∣∣∣(Pk∇f(xk)− Pk−j∇f(xk−j))
T diag(sk + ϵe)−1/2Pk−jgk−j

∣∣∣]

≤ ηkL
2
P∇fα

2ρ2maxκ
2
cσ

−2
min

√
1− β1

4
√
M2 + κ2

∇f

k−1∑
j=0

βj
1j

2

√
j + 1

+ ηkL
2
P∇fα

2
k

√
1− β1

4
√
M2 + κ2

∇f

k−1∑
j=0

βj
1j√
j + 1

j∑
l=1

E[∥tk−l∥22]

+
ηk
√
M2 + κ2

∇fhmax

hmin

√
1− β1

k−1∑
j=0

(
β1

β2

)j√
j + 1E[∥t̃k−j∥22]

≤ ηkL
2
P∇fα

2ρ2maxκ
2
cσ

−2
min

√
1− β1

4
√
M2 + κ2

∇f

k−1∑
j=0

βj
1j

2 + ηkL
2
P∇fα

2
k

√
1− β1

4
√

M2 + κ2
∇f

k−1∑
j=0

βj
1

√
j

j∑
l=1

E[∥tk−l∥22]

+
ηk
√
M2 + κ2

∇fhmax

hmin

√
1− β1

k−1∑
j=0

(
β1

β2

)j√
j + 1E[∥t̃k−j∥22]

≤ ηkL
2
P∇fα

2ρ2maxκ
2
cσ

−2
min

√
1− β1

4
√
M2 + κ2

∇f

β1(1 + β1)

(1− β1)3

+ ηkL
2
P∇fα

2
k

√
1− β1

4
√
M2 + κ2

∇f

k−1∑
j=1

E[∥tk−j∥22]
k−1∑
l=j

βl
1

√
l

+
ηk
√
M2 + κ2

∇fhmax

hmin

√
1− β1

k−1∑
j=0

(
β1

β2

)j√
j + 1E[∥t̃k−j∥22]. (28)

Combining (26) with the bounds (16), (27), and (28) completes the proof.

Theorem 3.2. Suppose that Assumptions 3.1 and 3.2 hold and define τ ∈ R>0 by (21) along with

G1(β1, β2) :=
τβ1L

2
P∇f

(1− β2)3/2
√
M2 + κ2

∇f

, G2(β1, β2) :=
(1− β1)(τL∇f + LJ)

2(1− β2)
,

G3(β1, β2) :=
τL2

P∇fρ
2
maxκ

2
c

√
1− β1β1(1 + β1)

4
√
M2 + κ2

∇f

√
1− β2(1− β1)2σ2

min

, and G4(β1, β2) :=
(τL∇f + LJ)ρ

2
maxκ

2
c

2σ2
min

.

Then, for any K ∈ N, it follows that

1

K

K∑
k=1

 hmin(1− β1)

2hmax

√
M2 + κ2

∇f

E[∥Pk∇f(xk)∥22] + ρminE[∥ck∥1]


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≤ ϕ(x1)− τfinf
ατK

+
6hmax

√
M2 + κ2

∇f

√
1− β1

hmin

√
1− β2

n

(1− β1

β2
)3/2

(
1

K
log

(
1 +

M2 + κ2
∇f

h2
min(1− β2)ϵ

)
− log(β2)

)

+

(
α2

τ
G1(β1, β2) +

α

τ
G2(β1, β2)

)
n

(1− β1

β2
)

(
1

K
log

(
1 +

M2 + κ2
∇f

h2
min(1− β2)ϵ

)
− log(β2)

)

+
α2

τ
G3(β1, β2) +

α

τ
G4(β1, β2). (29)

Proof. Proof. Consider arbitrary k ∈ N. Similar to (20), one has that

ϕ(xk+1)− ϕ(xk) ≤ τα∇f(xk)
T dk − αρk∥ck∥1 + 1

2α
2(τL∇f + LJ)∥dk∥22. (30)

Let λmax(·) and λmin(·) denote the maximum and minimum eigenvalues, respectively, of a real symmetric
matrix argument. By Assumption 3.2 and Lemma 3.2, one finds for any j ∈ {1, . . . , k − 1} that

λmax

(
diag(s̃k,j+1 + ϵe)1/2

)
≤

√√√√ϵ+

k∑
j=1

βk−j
2

(
M2 + κ2

∇f

h2
min

− ϵ

)
≤

√√√√ k∑
j=1

βk−j
2

(
M2 + κ2

∇f

h2
min

)

=

√
M2 + κ2

∇f

hmin

√
1− βk

2

1− β2
=

αk

√
M2 + κ2

∇f

hminα(1− β1)
.

Consequently, one finds that

E[(Pk−j∇f(xk−j))
T diag(s̃k,j+1 + ϵe)−1/2Pk−j∇f(xk−j)]

≥ E[λmin(diag(s̃k,j+1 + ϵe)−1/2)∥Pk−j∇f(xk−j)∥22] ≥
hminα(1− β1)

αk

√
M2 + κ2

∇f

E[∥Pk−j∇f(xk−j)∥22]. (31)

Taking total expectation (30), using Lemmas 3.3 and 3.9 and (31), one finds that

E[ϕ(xk+1)− ϕ(xk)]

≤ ταE[∇f(xk)
T dk]− αρkE[∥ck∥1] + 1

2α
2(τL∇f + LJ)E[∥dk∥22]

≤ ταE[∇f(xk)
T dk]− αρkE[∥ck∥1] + 1

2α
2(τL∇f + LJ)(E[∥vk∥22] + η2kE[∥tk∥22])

≤ − τhminα(1− β1)

2hmax

√
M2 + κ2

∇f

k−1∑
j=0

βj
1E[∥Pk−j∇f(xk−j)∥22] + τα

ρmaxκ∇fE[∥ck∥1]
σmin

+ ταk

3hmax

√
M2 + κ2

∇f

hmin

√
1− β1

k−1∑
j=0

(
β1

β2

)j√
j + 1E[∥t̃k−j∥22]

+ ταkL
2
P∇fα

2ρ2maxκ
2
cσ

−2
min

√
1− β1

4
√

M2 + κ2
∇f

β1(1 + β1)

(1− β1)3

+ τα3
kL

2
P∇f

√
1− β1

4
√
M2 + κ2

∇f

k−1∑
j=1

E[∥tk−j∥22]
k−1∑
l=j

βl
1

√
l

− αρminE[∥ck∥1] + 1
2α

2(τL∇f + LJ)
(
ρ2maxκ

2
cσ

−2
min + η2kE[∥tk∥22]

)
.

Summing over k ∈ {1, . . . ,K} and using the fact that {αk} is nondecreasing, one has

τhminα(1− β1)

2hmax

√
M2 + κ2

∇f

K∑
k=1

k−1∑
j=0

βj
1E[∥Pk−j∇f(xk−j)∥22]

︸ ︷︷ ︸
A

+αρmin

(
1− τκ∇fρmax

σminρmin

) K∑
k=1

E[∥ck∥1]
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≤ ϕ(x1)− τfinf +
3hmax

√
M2 + κ2

∇fταK

hmin

√
1− β1

E

 K∑
k=1

k−1∑
j=0

(
β1

β2

)j√
j + 1∥t̃k−j∥22


︸ ︷︷ ︸

B

+
τα3

KL2
P∇f

√
1− β1

4
√
M2 + κ2

∇f

E

 K∑
k=1

k−1∑
j=1

∥tk−j∥22
k−1∑
l=j

βl
1

√
l


︸ ︷︷ ︸

C

+
α2
K(τL∇f + LJ)

2
E

[
K∑

k=1

∥tk∥22

]

+K

ταKL2
P∇fα

2ρ2maxκ
2
cσ

−2
min

√
1− β1

4
√

M2 + κ2
∇f

β1(1 + β1)

(1− β1)3
+

α2(τL∇f + LJ)ρ
2
maxκ

2
c

2σ2
min

 . (32)

With respect to the term A, one finds by Lemma 3.2 that

A =
τhminα(1− β1)

2hmax

√
M2 + κ2

∇f

K∑
k=1

k−1∑
j=0

βj
1E
[
∥Pk−j∇f(xk−j)∥22

]

=
αhminτ

2hmax

√
M2 + κ2

∇f

K∑
k=1

(1− βK−k+1
1 )E[∥Pk∇f(xk)∥22].

With respect to the term B, one finds with Lemma 3.8 and β1 < β2 that

B =
3hmax

√
M2 + κ2

∇fταK

hmin

√
1− β1

E

 K∑
k=1

∥t̃k∥22
K∑

j=k

(
β1

β2

)j−k√
1 + j − k


≤

6hmax

√
M2 + κ2

∇fταK

hmin

√
1− β1

1

(1− β1

β2
)3/2

E

[
K∑

k=1

∥t̃k∥22

]
.

With respect to the term C, one finds with Lemma 3.8 that

C ≤
τα3

KL2
P∇f

√
1− β1

4
√
M2 + κ2

∇f

E

[
K∑

k=1

∥tk∥22
K−1∑
l=0

βl
1

√
l(l + 1)

]
≤

τα3
KL2

P∇f√
M2 + κ2

∇f

β1

(1− β1)2
E

[
K∑

k=1

∥tk∥22

]
.

Now it follows from Assumption 3.2 and Lemma 3.2 that sK,i ≤
M2+κ2

∇f

h2
min(1−β2)

. Thus, with Lemma 3.7,

K∑
k=1

∥tk∥22 =

n∑
i=1

K∑
k=1

t2k,i =

n∑
i=1

K∑
k=1

r2k,i
sk,i + ϵ

≤
n∑

i=1

1

(1− β1)(1− β1

β2
)

(
log
(
1 +

sK,i

ϵ

)
−K log(β2)

)
≤ n

(1− β1)(1− β1

β2
)

(
log

(
1 +

M2 + κ2
∇f

h2
min(1− β2)ϵ

)
−K log(β2)

)

and

K∑
k=1

∥t̃k∥22 =

n∑
i=1

K∑
k=1

t̃2k,i =

n∑
i=1

K∑
k=1

u2
k,i

sk,i + ϵ
≤

n∑
i=1

(
log
(
1 +

sK,i

ϵ

)
−K log(β2)

)
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≤ n

(
log

(
1 +

M2 + κ2
∇f

h2
min(1− β2)ϵ

)
−K log(β2)

)
.

Hence, with αK ≤ α 1−β1√
1−β2

and the above bounds for A, B, and C, one has from (32) that

ατhmin

2hmax

√
M2 + κ2

∇f

K∑
k=1

(1− βK−k+1
1 )E[∥Pk∇f(xk)∥22] + αρmin

(
1− τκ∇fρmax

σminρmin

) K∑
k=1

E[∥ck∥1]

≤ ϕ(x1)− τfinf +
6hmax

√
M2 + κ2

∇fτα
√
1− β1

hmin

√
1− β2

n

(1− β1

β2
)3/2

(
log

(
1 +

M2 + κ2
∇f

h2
min(1− β2)ϵ

)
−K log(β2)

)

+
(
α3G1(β1, β2) + α2G2(β1, β2)

) n

(1− β1

β2
)

(
log

(
1 +

M2 + κ2
∇f

h2
min(1− β2)ϵ

)
−K log(β2)

)
+K

(
α3G3(β1, β2) + α2G4(β1, β2)

)
.

Diving both sides by ατK, and using (21) along with (1− βK−k+1
1 ) ≥ (1− β1), yields the result.

This theorem shows that the long-run average of a positive combination of E[∥Pk∇f(xk)∥22] and E[∥ck∥1]
can be made as small as desired. Consider the right-hand side of (29), which can be written as the sum of

A :=
ϕ(x1)− τfinf

ατK
,

B :=
6hmax

√
M2 + κ2

∇f

√
1− β1n log

(
1 +

M2+κ2
∇f

h2
min(1−β2)ϵ

)
hmin

√
1− β2(1− β1

β2
)3/2K

,

C :=
6hmax

√
M2 + κ2

∇f

√
1− β1n (− log(β2))

hmin

√
1− β2(1− β1

β2
)3/2

,

D :=

(
α2

τ
G1(β1, β2) +

α

τ
G2(β1, β2)

)
n

(1− β1

β2
)

(
1

K
log

(
1 +

M2 + κ2
∇f

h2
min(1− β2)ϵ

)
− log(β2)

)
,

and E :=
α2

τ
G3(β1, β2) +

α

τ
G4(β1, β2).

Supposing that {ρk}, {hk}, β1, and ϵ are set and fixed, one can choose the remaining inputs β2, α, and
K to make each of the above terms as small as desired. Specifically, consider first the term C. Observe

that − log(β2)√
1−β2

and (1− β1

β2
)−3/2 are both monotonically decreasing in β2 ∈ (β1, 1) as β2 → 1 and the former

decreases to 0 and the latter to (1− β1)
−3/2, and hence C is monotonically decreasing in β2 over this range

and decreases to 0 as β2 → 1. Thus, one can first choose β2 close enough to 1 such that C is as small as
desired, and then consider the value of β2 as fixed. Next, one can choose α ∈ (0, 1] small enough such that
D and E are as small as desired, and then consider the value of α as fixed. Note that D could be further
reduced by increasing K. The last parameter to choose is K, where one can choose K large enough such
that A and B are as small as desired. In summary, by first choosing β2 close enough to 1, then choosing
α small enough, and finally choosing K large enough, one can make the right-hand side of (29) as small as
desired. Consequently, the long-run average of the linear combination of E[∥Pk∇f(xk)∥22] and E[∥ck∥1] can
be made as small as desired.
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4 Informed Supervised Machine Learning and Implementation
Details

Let us now discuss a methodology for which the algorithms proposed and analyzed in the previous section are
particularly well suited. The methodology involves incorporating prior knowledge into a supervised learning
process through hard constraints that are imposed during training only. Both of these highlighted aspects are
critical for its effectiveness. The methodology’s use of hard constraints is in contrast to previously proposed
methodologies that incorporate prior knowledge through either (a) soft constraints [37] (i.e., through regu-
larization/penalty terms in the objective function) or (b) designing the prediction function to incorporate
knowledge directly [4, 23] (e.g., through neural network layers for which a forward pass requires solving a set
of equations or even an optimization problem). By imposing such constraints during training only, one can
avoid having the trained network require expensive operations for each forward pass. Another key feature
of this methodology is that one does not solve the hard-constrained training problem with a penalty-based
(e.g., augmented Lagrangian) method. This feature is also critical for the effectiveness of the methodology.

The supervised training of a machine learning model involves solving an optimization problem over a set
of parameters of a prediction function, call it p : Rnf × Rn → Rno , where nf is the number of features in
an input, n is the dimension of the training/optimization problem, and no is the dimension of the output.
Denoting known input-output pairs in the form (a, b) ∈ Rnf×Rno and given a loss function ℓ : Rno×Rno → R,
the training/optimization problem can be viewed in expected-loss or empirical-loss minimization form, i.e.,

min
x∈Rn

∫
A×B ℓ(p(a, x), b)dPA,B(a, b) ≈ minx∈Rn

1
N

∑N
i=1 ℓ(p(ai, x), bi),

where A is the input domain, B is the output domain, PA,B is the input-output probability function, and
{(ai, bi)}Ni=1 ⊂ Rnf × Rno . In our setting, the problem has (hard) constraints on x as well. Generally, these
can be formulated in various ways; e.g., expectation, probabilistic, or almost-sure constraints. We contend
that for many informed-learning problems—such as for many physics-informed learning problems, as we
discuss below—a fixed, small number of constraints suffices to improve training. Given a (small) number m
of input-output pairs {(aci , bci )}mi=1, the constraints may take the form

ϕi(p(a
c
i , x), b

c
i , . . . ) = 0 for all i ∈ {1, . . . ,m},

where the arguments to the constraint functions {ϕi} may include additional terms, such as derivatives of
the prediction function with respect to inputs and/or model weights; see §5 for specific examples.

Our algorithms from the previous section can be employed in numerous informed-learning contexts (e.g.,
fair learning [7, 11, 16, 34–36]). For this work, we tested our approach on a few physics-informed learning
problems. We emphasize that our goal here is not to test huge-scale, state-of-the-art techniques for physics-
informed learning. Rather, we take a few physics-informed learning test problems and train relatively
straightforward neural networks in order to demonstrate the relative performance of our proposed algorithms
with a soft-constrained approach with Adam scaling [15] and the hard-constrained approach with Adam
scaling from [21]. The relative performance of the algorithms would be similar if we were to train much more
sophisticated and large-scale neural networks that are being developed in state-of-the-art physics-informed
learning. For more on physics-informed learning we direct the reader to, e.g., [6, 14, 19, 26, 29, 32, 33]. The
work [5] lies in the physics-informed learning with hard constraints, but is restricted to the hard constraints
that the PDE inputs and solutions are linearly related, whereas our method handles general nonlinear
constraints. They enforce feasibility via projection, while we allow infeasible iterates, using projection only
for momentum. Thus, we do not compare our method with theirs.

Let us now provide an overview of the setting of physics-informed learning that we consider in our
experiments. A parametric partial differential equation (PDE) can be written generically as F(ϕ, u) = 0,
where (Φ,U ,V) is a triplet of Banach spaces, F : Φ × U → V is a differential operator, ϕ ∈ Φ represents
PDE parameters, and u ∈ U denotes a solution of the PDE corresponding to ϕ. The aim is to train a model
to learn a mapping from the PDE parameters to a corresponding solution. Let such a mapping be denoted
as G : Φ × Rd × Rn → U , the inputs to which are PDE parameters, a vector encoding information about
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the domain of the PDE solution about which one aims to make a prediction (e.g., temporal and/or spatial
coordinates), and, say, neural-network model parameters, and the output is a predicted solution value.

For training a model to solve the PDE with potentially no known solution values (see [14]), one can
consider a set of training inputs {(ϕi, yi)}i∈S1

and minimize the average PDE residual over the training
inputs. Assuming that, in addition, one has access to observed and/or computed solution data in the form of
tuples {(ϕi, yi, ui)}i∈S2 , one can also aim to minimize the differences between known and predicted solution
values. Mathematically, these aims can be expressed as finding x to minimize

1

|S1|
∑
i∈S1

∥F(ϕi,G(ϕi, yi, x))∥22 and/or
1

|S2|
∑
i∈S2

∥ui − G(ϕi, yi, x)∥22. (33)

Note that the ϕi and/or yi elements in {(ϕi, yi)}i∈S1 may be the same or different from those in {(ϕi, yi, ui)}i∈S2 .
Additional terms may also be used for training, e.g., pertaining to initial and/or boundary conditions, or
pertaining to partial physics information. For example, in §5.2, we train a model for which it is known that
a mass-balance equation should hold, so our training problem involves residuals for the known mass-balance
equation, even though this only defines the physics partially. Overall, if one combines all learning aims
into a single objective function—say, with a linear combination involving weights for the different objective
terms—then one is employing a soft-constrained approach. We contend that a more effective approach can
be to take at least a subset of terms and impose them as hard constraints during training. For example,
with respect to the aims in (33), one might impose constraints such as F(ϕi,G(ϕi, yi, x)) = 0 for some i ∈ S1

and/or ui = G(ϕi, yi, x) for some i ∈ S2. Our experiments show the benefits of this idea.

5 Numerical Experiments

In this section, we present the results of numerical experiments that compare the performance of our proposed
algorithms (SQP-Heavyball(con) and SQP-Adam(con), respectively, where (“con” stands for “constrained”)
versus a soft-constrained approach with Adam scaling (Adam(unc) for “unconstrained”) [14] and a hard-
constrained approach with projection-less Adam scaling (Adam(con)) [21]. We consider four test problems.
A few of them—namely, our 1D spring, 1D Burgers’ equation, and 2D Darcy flow problems—have been seen
in the literature; see [20, 23]. We also consider a problem from chemical engineering, a modified version of a
reaction network proposed in [13]. To ensure a fair comparison, for each test problem, SQP-Heavyball(con),
SQP-Adam(con), Adam(unc), and Adam(con) use the same objective function, which is usually the data-fitting
loss plus PDE residual loss, while the hard-constrained methods SQP-Heavyball(con), SQP-Adam(con), and
Adam(con) impose additional constraints: the PDE residuals are zero at some input data points. Further
details are provided in each problem’s subsection. The software uses PyTorch (BSD-3 license). For all
experiments, the parameters β = 0.9, β1 = 0.9, β2 = 0.999, and ϵ = 10−7 were used; see Algorithms 2 and 3.
Our numerical experiments were performed using Google CoLaboratoryTM L4 GPU platforms.

5.1 1D Spring

Our first test problem aims to predict the movement of a damped harmonic (mass-spring) oscillator [22]
under the influence of a restoring force and friction. For simplicity, our aim was to train a model to predict
the movement for known parameters and a single initial condition. (Our later test problems involved more
complicated situations; this simple problem and the case of only a single initial condition serves as a good
starting point for comparison.) The spring can be described by a linear, homogeneous, second-order ordinary

differential equation with constant coefficients, namely, md2u(t)
dt2 + µdu(t)

dt + ku(t) = 0 over t ∈ [0, 1], where
we fixed the mass m = 1, friction coefficient µ = 4, and spring constant k = 400. This corresponds to
an under-damped state for which the exact solution with amplitude A and phase ϕ is well known to be
u(t) = e−δt(2A cos(ϕ+ t

√
w2

0 − δ2)), where δ = µ/(2m) and w0 =
√
k/m.

Our aim was to train a neural network with the known ODE and a few observed solution values to be
able to predict the height of the spring at any time t ∈ [0, 1]. We used a fully connected neural network
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with 1 input neuron (corresponding to t), 3 hidden layers with 32 neurons each, and 1 output neuron (that
predicts the spring height at time t). Hyperbolic tangent activation was used at each hidden layer. For the
training problems, we used two types of terms: ODE-residual and data-fitting terms. The times at which the
ODE-residual terms were defined were 30 evenly spaced points over [0, 1]. The times at which the data-fitting
terms were defined were 10 evenly spaced points over [0, 0.4]. The runs for Adam(unc) only considered an
objective function where the terms in (33) were combined with a weight of 10−4 on the average ODE-residual.
The runs for the remaining solvers considered the same objective and included hard constraints for the ODE
residual at times { 4

29 ,
12
29 ,

21
29}, i.e., 3 constraints. For all algorithms, we ran a “full-batch” version (i.e., with

exact objective gradients employed) and a “mini-batch” version, where in each iteration of the latter version
only half of the ODE-residual data points were used. We employed the same two fixed learning rates (i.e.,
value of α in Algorithms 2 and 3) for each algorithm: 5× 10−4 and 1× 10−4. For the other step-size-related
parameters we chose ρk = 1 and hk = 1 for all k ∈ N.

Results are provided in Figures 1 and 2. The plots in Figure 1 show that SQP-Adam(con) yielded lower
objective values (loss) more quickly and achieved better accuracy (i.e., lower mean-squared error) after the
training budget expired. They also show that SQP-Adam(con) achieved more comparable results for the two
learning rates, whereas the other algorithms performed worse for the smaller learning rate. Our results here
demonstrate that SQP-Adam(con) requires less hyperparameter tuning. The plots in Figure 2 show that the
difference in performance can be seen clearly in the predictions that one obtains.

Figure 1: 1D Spring losses over epochs. For the mini-batch runs, the solid lines indicate means over 5 runs
while the shaded regions indicate values within one standard deviation of the means.

Figure 2: Predicted trajectories. Left to right: Adam(unc) (mini-batch, αk = 0.0005), SQP-Adam(con)
(mini-batch, 0.0005), Adam(unc) (mini-batch, 0.0001), and SQP-Adam(con) (mini-batch, 0.0001). Axes are
time t ∈ [0, 1] (horizontal) and true/predicted u(t) (vertical). Green dots indicate times at which the ODE-
residual terms were defined for the objective function; orange dots indicate data-fitting values; the gray line
indicates the true solution; and the blue line indicates the predicted solution. Code from [22] (available
under the MIT License) was used to generate the plots.

5.2 Chemical engineering problem

This problem models the reaction system of 1-butene isomerization when cracked on an acidic zeolite [13].
The system is reformulated as an ordinary linear differential equation by scaling the kinetic parameters of
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the true model. The ODE is

du(t)

dt
=


−(c(1) + c(2) + c(4))u(1)(t) + c(3)u(3)(t) + c(5)u(4)(t)

2c(1)u(1)(t)
c(2)u(1)(t)− c(3)u(3)(t)
c(4)u(1)(t)− c(5)u(4)(t)

 ,

where c = [4.283, 1.191, 5.743, 10.219, 1.535]T . Our aim was to train a neural network with the known ODE

and mass-balance condition (namely, du(1)(t)
dt +0.5du(2)(t)

dt + du(3)(t)
dt + du(4)(t)

dt = 0) over various initial conditions
near a nominal initial condition, where the nominal one is u0 = [14.5467, 16.335, 25.947, 23.525]. In this
manner, the trained network can be used to predict u(t) at any t (for which we use the range t ∈ [0, 10]) for
any initial condition near the nominal one.

We used a fully connected neural network with 5 input neurons (corresponding to the initial condition
in R4 and t ∈ R), 3 hidden layers with 64 neurons each and hyperbolic tangent activation, and 4 output
neurons (corresponding to u(t) ∈ R4). The training problems involved three objective terms: ODE-residual
(weighted by 10−2), mass-balance (weighted by 10−2), and data-fitting (weighted by 1) terms. Training
data was generated by solving the ODE over 1000 initial conditions (of the form u0 + ξ, where ξ was a
random vector with each element drawn from a uniform distribution over [−1, 1]) using odeint from the
scipy library [31] (BSD licensed). Specifically, solution values were obtained over 64 evenly spaced times
in [0, 10], which over the 1000 initial conditions led to 64000 training points. The ODE-residual and mass-
balance terms involved all 64000 training points, whereas the data-fitting term involved only 20% of these
points chosen at random with equal probability. The runs for Adam(unc) used only these objective terms,
whereas the runs for SQP-Heavyball(con), SQP-Adam(con), and Adam(con) also considered 10 constraints
on mass-balance residuals, the points for which were chosen uniformly at random over all initial conditions
and times. The mini-batch size was 20% of all samples. We tested learning rates for all algorithms: 5×10−4

and 1 × 10−4. For the other step-size-related parameters we chose ρk = 0.5 and hk = 1 for all k ∈ N. The
results in Figures 3 show that SQP-Adam(con) performed best.

Figure 3: Chemical engineering problem losses over epochs. For the mini-batch runs, solid lines indicate
means over 5 runs while the shaded regions indicate values within one standard deviation of the means.

5.3 1D Burgers’ equation

Burgers’ equation is a PDE often used to describe the behavior of certain types of nonlinear waves [23, 33].
With respect to a spatial domain [0, 1], time domain [0, 1], and viscosity parameter ν = 0.01, we used the
equation, initial condition, and (periodic) boundary condition

∂u(x,t)
∂t + u(x, t)∂u(x,t)∂x = ν ∂2u(x,t)

∂x2 , x ∈ (0, 1), t ∈ [0, 1];

u(x, 0) = u0(x), x ∈ [0, 1];

u(x, t) = u(x+ 1, t), x ∈ [0, 1], t ∈ [0, 1].
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Our aim was to train a neural network with the known PDE and boundary condition over various initial
conditions near a nominal initial condition. In this manner, for any (x, t) and initial condition near the
nominal one, the trained network can predict u(x, t).

We used a fully-connected neural network with 34 input neurons (corresponding to x, t, and a discretiza-
tion of u0 over 32 evenly spaced points), 3 hidden layers with 64 neurons each and hyperbolic tangent
activation, and 1 output neuron (corresponding to u(x, t)). The training problems involve three objective
terms: PDE-residual (weighted by 10−3), boundary-residual (weighted by 10−3), and data-fitting (weighted
by 1) terms. Training data was generated by solving the PDE over 100 initial conditions (of the form
u0(x) = sin(2πx+ ξπ), where for each instance ξ was chosen from a uniform distribution over [0, 0.2]) using
the odeint solver, as in the previous section. Specifically, solution values were obtained over 32 evenly spaced
points each in the spatial and time domains, which over the 100 initial conditions led to 102,400 training
points. For each initial condition, the PDE-residual and boundary-residual terms involved all relevant gen-
erated training points, whereas the data-fitting term involved only 200 points chosen at random with equal
probability. Adam(unc) used only these objective terms, whereas SQP-Heavyball(con), SQP-Adam(con),
and Adam(con) also considered 10 constraints on PDE residuals, the points for which were chosen uniformly
at random over all initial conditions and spatio-temporal points. The mini-batch was 20% of all samples.
We tested learning rates: 10−3 and 5 × 10−4. For the other step-size-related parameters we chose ρk = 1
and hk = 1 for all k ∈ N. One finds in Figure 4 that the results obtained by Adam(unc) and SQP-Adam(con)

were in fact comparable. The performance by the projection-less Adam approach (Adam(con)) was inferior
to these, and the performance by SQP-Heavyball(con) was poorer still. Figure 5 shows that a prediction
by the model obtained by SQP-Adam(con) is indeed close to the true solution.

Figure 4: Burgers’ losses over epochs. For mini-batch runs, solid lines indicate means over 5 runs while the
shaded regions (not very visible) indicate values within one standard deviation of the means.

Figure 5: Burgers’ true/predicted solutions
for initial condition not seen in training.
Predicted solution by SQP-Adam(con) (mini-
batch, αk = 0.0005).

Figure 6: Darcy flow diffusion coefficient ν and
true/predicted solution, where diffusion coefficient
ν not seen in training. Predicted solution by
SQP-Adam(con) (mini-batch, αk = 0.001).

5.4 2D Darcy flow

The steady-state 2D Darcy flow equations model the flow of a fluid through a porous medium [23, 29].
With respect to the spatial domain [0, 1]2, a forcing function f (we use f(x) = 1 for all x ∈ (0, 1)2 in our
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experiments), and a diffusion coefficient ν, we used

−∇ · (ν(x)∇u(x)) = f(x), x ∈ (0, 1)2;

u(x) = 0, x ∈ ∂[0, 1]2.

Our aim was to train a neural network with the known PDE and boundary condition over various diffusion
coefficients such that, for any x ∈ [0, 1]2 and diffusion coefficient ν, it could be used to predict u(x).

We used the Fourier Neural Operator (FNO) architecture imported from the neuralop library [18, 20]
(MIT License). The inputs were given in three channels, one for ν, one for a horizontal position embedding,
and one for a vertical position embedding. Each channel had dimension 16 × 16. We used 4 hidden layers
(the default). The output was a single channel of dimension 16× 16 (corresponding to u(x)). The training
problems involve three objective terms: PDE-residual (weighted by 10−3), boundary-residual (weighted
by 10−3), and data-fitting (weighted by 1) terms. We use the neuralop package [17] to generate 100 ν
values and their corresponding solutions for training. Specifically, we first generate 1000 samples using the
default settings of neuralop and then select 100 with similar ν values. For each ν value, the PDE-residual
and boundary-residual terms involved all relevant generated training points, whereas the data-fitting term
involved only 20% of the points chosen at random with equal probability. The runs for Adam(unc) used
only these objective terms, whereas the runs for SQP-Heavyball(con), SQP-Adam(con), and Adam(con)

considered the same objective in addition to 50 constraints on PDE residuals, the points for which were
chosen uniformly at random over all initial conditions and spatial points. We ran full-batch and mini-batch
settings, where the mini-batch was dictated by 20% of the ν values. We tested using the same learning
rates for all algorithms: 5× 10−3 and 1× 10−3. For the other step-size-related parameters we chose ρk = 1
(SQP-Heavyball(con)), ρk = 0.5 (SQP-Adam(con)), and hk = 1 for all k ∈ N. The results in 7 show
strong relative performance by SQP-Adam(con). Figure 6 shows that a prediction by the model obtained by
SQP-Adam(con) is close to the true solution.

Figure 7: Darcy flow losses over epochs. For mini-batch runs, solid lines indicate means over 5 runs while
the shaded regions indicate values within one standard deviation of the means.

6 Conclusion

We proposed two stochastic diagonal-scaling methods for nonlinear equality constrained optimization, and
provided convergence guarantees for each approach. We also demonstrated the algorithms in the context
of informed supervised learning. The methods’ per-iteration costs are comparable to an unconstrained
(soft-constrained) approach that also uses diagonal scaling. The numerical experiments reveal practical
benefits of the proposed schemes, which we conjecture would also be witnessed when training larger and
more sophisticated neural networks for informed learning.
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[10] Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A Simple Convergence Proof of
Adam and Adagrad. In Transactions on Machine Learning Research. arXiv:2003.02395, 2022.

[11] Michele Donini, Luca Oneto, Shai Ben-David, John S Shawe-Taylor, and Massimiliano Pontil. Empirical
risk minimization under fairness constraints. In Advances in Neural Information Processing Systems.
arXiv:1802.08626, 2018.

[12] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.

[13] Udit Gupta, Seongmin Heo, Aditya Bhan, and Prodromos Daoutidis. Time scale decomposition in
complex reaction systems: A graph theoretic analysis. Computers & Chemical Engineering, 95:170–181,
December 2016.

[14] George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, May 2021.

[15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, ICLR. arXiv:1412.6980, 2015.

[16] Junpei Komiyama, Akiko Takeda, Junya Honda, and Hajime Shimao. Nonconvex optimization for
regression with fairness constraints. In International conference on machine learning. PMLR, 2018.

[17] Jean Kossaifi, Nikola Kovachki, Zongyi Li, David Pitt, Miguel Liu-Schiaffini, Valentin Duruisseaux,
Robert Joseph George, Boris Bonev, Kamyar Azizzadenesheli, Julius Berner, and Anima Anandkumar.
A library for learning neural operators. arXiv preprint arXiv:2412.10354, 2025.

[18] Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with appli-
cations to pdes. Journal of Machine Learning Research, 24(89), 2023.

25



[19] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving ordinary
and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000, 1998.

[20] Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. In International Conference on Learning Representations, ICLR, 2021.

[21] Pablo Márquez-Neila, Mathieu Salzmann, and Pascal Fua. Imposing hard constraints on deep networks:
Promises and limitations. arXiv preprint arXiv:1706.02025, 2017.

[22] Ben Moseley. So, what is a physics-informed neural network? https://github.com/benmoseley/

harmonic-oscillator-pinn/blob/main/Harmonic%20oscillator%20PINN.ipynb, 2018. Published:
2021-08-28.
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