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ABSTRACT

In this report, we suggest an integrated approach for the development of a base stock
inventory control policy in serial production systems with certain stochastic features. The
stochastic features include Poisson demand process, random processing times and yield
problem. We assume that there are several products to be produced in the system.
Research activities are three fold : (1) Lot sizing and estimation of transit times through
production stages (2) Developing the analytical model for base stock inventory control

policy (3) Approximate optimization of base stock levels using a heuristic.



Chapter 1

Introduction And Literature Review

1.1 Introduction

The production, use or the distribution of inventories are activities in which almost all
organizations are involved. On the average, 30% of current assets and 90 % of the
working capital of a typical company in the United States are invested in inventories
(Silver and Peterson, 1985). Thus, the inventory management has become one of the key

issues to be addressed for a business to survive,

A multi-echelon inventory system is a network of inventory holding facilities organized
into different echelons. Goods flow from one facility to another at a lower echelon. A
major issue in the design of a multi-echelon inventory system is how to manage the flow
of inventories so as to balance different considerations, such as economies of scale,

inventory carrying cost, and service level.

A common example of a multi-echelon system is one with a number of retail outlets
which directly satisfy customer demand. These retailers act as customers for a higher
level wholesale or production operation. There could be more than two layers of echelons
in the system. There has been particular interest in this type of multi-echelon distribution
system. A production example of a multi-echelon inventory system is the one in which
several final products are made in a common production facility. Inter-stage inventories
decoupling the production stages are viewed as the levels of a multi-echelon inventory

system.



The basic functions of an inventory policy are to determine (1) how often to review the
inventory status, (2) how much to order, (3) when to place an order. The review interval,
the order quantity, and the reorder level ( inventory position at which an order must be
placed } are usually designated by R, Q and s respectively. The inventory policies are
either continuous review policies, such as (s,Q) policy ( where an order of size Qs
placed when the inventory position falls to or below s ), or periodic review policies like
the (R,S) policy (where an order is placed each R units of time to bring the inventory up
to a value S). In multi-echelon systems, ordering decisions at a certain level of the
hierarchy determine the demand at the next higher level. Because of this demand and

supply dependency, any good inventory policy should be a coordinated one.

Some of the reasons that have made multilevel inventory control problems difficult
relative to single level ones can be summarized as follows;

1) The demand process : The demand process and the inventory policy at one
level of a multilevel system determine the demand process at the next higher level. Thus,
even if the lowest level has a well behaved demand process, the supply and demand
process will be more complex as we move up the hierarchy.

2) Treatment of shortages : Shortages at one level can cause shortages at Jower
levels.

3) Simultaneous optimization : Optimality is rarely achieved by determining the
optimal policy at each level separately because of the demand and the shortage
dependencies mentioned above.

4) Computing requirements : Due to its complexities, an analysis of the multilevel

problem requires much more computational effort than a single level problem.



There are several structures of multilevel inventories and many ways to organize and
control these structures. In this report, we are concerned with base stock inventory control
policy development in serial production systems with some stochastic features such as,
random processing time, demand and yield. The base stock control policy prescribes that
each production stage start production whenever the associated inventory level drops to or
below a predetermined base stock level and stop production when the inventory level
reaches the base stock level. Thus, this policy implies continuous review. This type of
policy can be classified as a "pull" system because replenishment orders are pulled down

by the lower echelons from their replenishment sources.

The base stock control policy requires that only a single parameter, base stock level, be
determined and results in a limited amount of communication between echelons.
Fredergruen and Zipkin (1986 ab) show that a base stock policy is optimal for
capacitated single-stage systems. Clark and Scarf (1960) establish the optimality of base-
stock policies in serial, uncapacitated multistage systems. Finally, Veatch and Wein
(1994) show experimentally that base-stock policies are often close to optiral for a class
of two-stage capacitated systems. These results, and the ease of implementation, made us
decide to develop an approach to find base-stock inventory control policy for serial

production systems.

We also needed to make multi-item lot sizing decisions at each echelon level which yield
transit times at each production stage. These transit times are necessary inputs in
developing a base stock control policy in our approach. Hence, we devote the first part of

the solution procedure to the lot sizing decision.



1.2 Literature review

For the lot sizing part of our approach we adopted a modified version of a method
presented by Karmarkar et al. (1992). They suggest multi-item batching heuristics which
try to minimize the queuing delays in a single server queuing system with Poisson arrivals
of multiple items and general service time. They approximate multiple Poisson arrivals
with a single arrival stream from a Poisson distribution and, thus, the system is
characterized as M/G/1. They claim that taking the minimization of queuing delays of the
batches as the objective in batching yields better results in terms of cash flow compared
to the conventional trade off between setup and inventory holding cost. Further discussion

on this method is given in chapter 3.

In the remainder of this chapter, relevant literature on multilevel inventory control is
discussed. First, we introduce some literature on general muti-echelon systems and, then,

discuss research on serial systems.

1.2.1 General multi-echelon systems

In the area of multi-echelon inventory control, systems with deterministic demand have
been studied for the last three decades. The problem studied often is a two echelon
problem ; the, so called, one-warehouse n-retailer problem. Schwarz (1973) proved that if

an optimal policy exists, then it has to satisfy the following conditions;

1. Deliveries are made to the warchouse only when the warehouse has zero

inventory and at least one retailer has zero inventory.



2. Deliveries are made to any given tetailer only when that retailer has zero
inventory.
3. All deliveries that are made to any given retailer between successive deliveries

to the warehouse are of equal size.

He also suggested some heuristic procedures for determining the lot sizes at each retailer
and at the warehouse. His policies were nested stationary policies ( a nested policy is one
where each facility orders each time its immediate supplier does and perhaps at other
times too, while a stationary policy is one where each facility orders at equally spaced
points in the time and in equal amounts ). Up on testing of these heuristics against

analytical lower bounds, he found that they gave near optimal solutions.

Graves and Schwarz (1977) examined optimal and near-optimal continuous review
policies for deterministic arborescent inventory systems ( where an echelon inventory
point can be supplied only by a single echelon inventory point, while it can supply more
than one echelon inventories ). They extended the conditions for optimality developed by

Schwarz (1973).

Roundy (1985) examined one-warehouse n-retailer problems where the demand is
constant and there is linear holding cost. In his literature review he mentions that optimal
policies seem to be very difficult to compute. He came up with a new class of policies
and proved that the cost of a policy in this class is within 2 % of the optimal solution.
Park and Kim (1987) developed an inventory model for two echelon distribution systems
assuming periodic ordering at both levels and a constant, deterministic demand. Johnson
and Silver (1987) examined the redistribution at the lower level echelon ( branch

warehouses ) due to out of balance inventory. The redistribution they considered is a
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complete redistribution of all lower level facility inventories one period before the order
cycle. Muckstadt and Roundy (1987) studied the problem of coordinating the purchase
and shipment of items in a one-warehouse, n-retailer system. Their model includes
positive echelon holding cost, fixed cost for ordering and shipping each-item, and a fixed
joint item order cost. They also assumed that a stationary nested policy is followed.
Finally, Williams (1981) discusses seven heuristic algorithms used for deterministic
distribution scheduling in arborescent networks and joint deterministic production

distribution scheduling in conjoined assembly arborescent networks.

In multilevel inventory distribution systems under probabilistic demand, work again has
been mostly on the one-warehouse, n-retailer problem. Federgruen and Zipkin (1984a)
considered a central depot supplying several locations. Assuming that the central depot
carries no inventory, they developed a dynamic programming model to minimize the
expected total cost. Deuermeyer and Schwarz (1981) developed an analytical model for
estimating the expected fill rate for a one-warehouse, n-retailer system as a function of
the system parameters. This model was based on an exact, single facility ( R,Q ) model of
Hadley and Whitin (1963). Rosenaum (1981) developed a heuristic model which
combines the service levels at the two echelons. This heuristic minimizes the company
safety stock, while ensuring that a specific percentage of the customer demand will be
filled from on hand inventory. Sand (1981) developed two methods for predicting the
demand on the secondary level. He compared his results to the data obtained from

simulation and concluded that the results are quite accurate.

Svoronos and Zipkin (1991) published an approach to approximate the system
performance measures in an arborescent multi-echelon system. They assume stochastic

transit times of the parts between echelons and a Peisson demand process arising at the
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lowest echelon. They considered the base stock control policy. We adopt their approach
in this paper to estimate the system performance measure for a given set of base stock
levels since the approach has the closest set of assumption to those of our problem. More
explanations of this approach is given in chapter 4. Zipkin (1991) extends this approach

to allow compound Poisson demand distribution.

1.2.2 Serial Systems

There has been relatively less work done on particular serial systems compared to the
work for general multi-echelon systems. Clark and Scarf (1960) published one of the first
papers on serial and assembly inventory systems. Their model dealt with periodic review
policies under stochastic demand. They presented the echelon inventory and echelon
inventory holding cost concepts for the first time. They assumed constant demand
originating at the lower level only. They also assumed the cost of purchasing and shipping
of an item to be linear without any setup cost. The only exception to this assumption was
at the highest echelon where a setup cost is permitted. Clark and Scarf (1962) also give an
approximate solution to a two-level problem with setup cost at both levels. Their results
only apply to finite horizon problems. Federgruen and Zipkin (1984b) extend the Clark
and Scarf (1960) approach to infinite horizon problems to find an optimal solution for a

two-level serial system and approximate policies for a two-level arborescent system.

Debodt and Graves (1985) present a continuous review inventory model for a multistage
serial inventory system where the demand for the end item is stochastic and stationary.
They provide approximate performance measures under a nestedness assumption ;
whenever a stage receives a shipment a batch must be send to its downstream stage.

Bardinelli (1992) studies installation ( R,Q ) policies in serial systems with Poisson
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demand. By assuming that the inventory position at each stage is non-negative, he
provides exact, long-run average holding and backorder cost expressions. Glasserman and
Tayur (1996) present an approximation for serial production-inventory system with
limited capacity. They assumed fixed lead times. They adopt a base-stock inventory
control policy and suggest that the distribution of echelon inventory can be approximated
as a sum of exponentials which is the basis of their analysis. They optimize the base-
stock levels for multistage examples using their approximation model and compare their
resuits to simulation results. Their results turn out to be very close to simulation results in
terms of system inventory holding cost. Glasserman (1997) gives more detailed
explanation of their approximation model for single stage and serial systems which also

accommodates imperfect production.



Chapter 2

Problem Description and Summary of The Sclution Approach

2.1 Problem description and objective

The production system for which we will develop a base-stock inventory control policy is

assumed to have the following properties ;

1. It is composed of serially connected production stages.

2. There are multiple products to be produced in the system.

3. The setup times associated with each type of product at each stage are significant and
constant.

4. The processing time per unit product at each stage is a random variable with a general
distribution.

5. There are yield problems in the system. Yield is a unit by unit binomial process.

6. There is an infinite supply of raw material before the first stage for each type of
product.

7. Demand arises only at the lowest inventory point after the final stage and it has a
Poisson distribution.

8. If a demand can not be satisfied at the moment it arises it is backordered.

9. At each stage only one unit of semifinished product from the previous stage is
necessary for the current stage to start processing.

10. There are no breakdowns in the system.

The following figure is an example of a four-stage system showing the labeling we use

for production stages and inventory points;
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Figure 2-1 Representation of a four-stage system.

The objective of this report is to develop an approach to determine the base-stock levels
at each inventory point for each type of product which minimizes the system inventory
holding cost and, at the same time, achieves a certain fill rate or, in other words, service
level at the end product inventory. Other type of restrictions, such as forcing the expected
inventory level at an inventory area to be less that a certain value can easily be

incorporated in our approach as we explain in chapter 5.

QOur problem description is quite comprehensive in terms of the assumptions. We include
many features that a real problem can have in our problem description, such as random
processing times, yield problem, random demand, multiple products and limited

production capacity.

2.2 Summary of the solution approach

Ouwr approach to the solution of the problem, described above, is complete in that it starts
with lot sizing using processing and setup times, and demand data, continues with
establishing the relation between base-stock levels and fill rate, and ends with
approximately optimizing the base-stock levels at each stage by using a heuristic search

method. There has been some work in the literature dealing with one of the first two parts
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of our approach but not all of the three parts, collectively. Thus, our approach has three

main steps as described in the following subsections.

2.2.1 Estimation of the moments of transit times

The transit time for a part is defined as the time period that elapses between the release of
the part from the previous inventory and the entrance of the part to the current inventory.
That is, it is composed of queuing time and service time of the part at the current
production stage. The approach taken here requires that the first two moments of the
transit times of each type of part at each stage be known or estimated. It is clear that the
transit times will be affected by the lot sizing decisions since the lot sizes are important
factors determining both the setup time share of a unit product, which can be found by

dividing the setup time by the lot size, and the queuing time of each lot of products.

The lot sizing decision part of our problem can be classified as multi-product, multilevel,
stochastic lot sizing. This problem is a very complicated one. We needed to simplify it
since the main purpose of this step of the approach merely is to get good estimates of the
first two moments of the transit times under steady state conditions provided by using
certain lot sizes. One may even skip this step if good estimates of these moments are
known from a simulation study or historical data. Therefore, we ignored the multilevel

property of the lot sizing problem.
There is an important fact regarding the entire analysis. If the real distribution of the lead

times, the transit times plus the delay due to lack of inventory at the previous inventory

point, can be approximated satisfactorily by a gamma distribution, our analysis will be
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exact. The deviation from the true values will, thus, be dependent on the following two
items;

1. How good a gamma distribution can represent the real distribution of the lead times.

2. How good our estimates of the first two moments of the lead times are.

After finding the estimates of the first two moments of the lead times for each product at
each stage under steady state, we carry out the analysis product by product and consider
the interaction among products and capacity limitation as we find the estimates. We
address the lot sizing issue and the estimation of the moments of the transit times in

chapter 3.

2.2.2 Establishing the analytical relationship

The analytical relationship to be established here is between the base stock levels (the
decision variables) at each stage for each product and the fill rate, the system performance
measure, for each product. As we stated in the literature review part, we will apply a
method suggested by Svoronos and Zipkin (1991) to establish the relationship. We
modified this analytical model since our problem setup differs from the one they

assumed.

We selected to use fill rate as the system performance measure. Any other system
performance measure can easily be replaced or used together with the customer fill rate in
our approach. Because the analytical model provides the state of the system at all stages,
our search heuristic can easily accommodate any restriction based on these states, such as
inventory level or backorder level restriction at any stage. We explain the analytical

model in chapter 4.

-13-



2.2.3 Approximate optimization of base-stock levels

Here the optimization means the determination of the base-stock levels which minimize
the system inventory holding cost. The single restriction of assuring a predetermined fill
rate needs to be taken into account in the cost minimization process.

We suggest a heuristic search procedure that accomplishes this approximate optimization
part of the approach. The heuristic utilizes the analytical relationship introduced in
subsection 2.2.2 to calculate the system inventory holding cost and the customer
satisfaction rate for a given set of base-stock levels at each stage. We discuss this search

heuristic in chapter 5.
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Chapter 3

Lot Sizing and Estimation of The Moments of Transit Times

3.1 Introduction

As we mentioned in chapter 2.2.1 estimates of the first two moments of the transit times
are the inputs for the second step of our approach and lot sizes directly affect transit
times. We consider one stage at a time as we make lot sizing decision in our multi stage
system where the processing times has general distribution. As an approximation we will
model each stage as an M/G/1 system and utilize a published method by Karmarkar et al.
(1992) and Karmarkar et al. (1985) which relates the lot sizes to waiting time in the queue

and in the system in the M/G/1 system.

In general, lot sizing models have traditionally aimed at a tradeoff between inventory
holding and setup costs. They concentrate on finished goods and echelon stocks and
overlook the congestion and queuing delays. These delays, in turn, increase the lead time.
Long lead times mean high levels of work-in-process inventories and poor inventory
"turn" which is defined as 1/(lead time) in Karmarkar et al. (1985). They also cause high
levels of safety stock since the variance of the lead time increases proportionally to lead

time. As a result, the competitiveness of a firm can be harmed.

It is usually assumed that the performance of a manufacturing system with delays and
queues is primarily due to dispatching and sequencing at production resources. But in fact
the lot sizing policy applied in the system is another major factor affecting the queuing
behaviors in the system. Large lot sizes cause queue buildups at production resources

since large lots tie up the resources for long time periods. Reducing the lot sizes will be
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helpful up to a certain point. After this point, reduction of lot sizes will cause longer
queue buildups and delays because of the frequent setups leading to high workloads at

production resources and, after a threshold, explosively increasing queuing times.

The model presented here ignores the setup costs and concentrates on queuing delays,
whereas the traditional EOQ models do not consider the queuing delays and their
consequences in the system. Rummel (1989) shows that the cost models based on the
minimization of queuing delays and lead times are more representative in terms of cash

flow than the traditional ones mentioned above.

The results of the published model by Karmarkar et al. (1992) is quite different than the
usual EOQ models. They show that lot sizes are linear in setup times and processing rates
and increase explosively with total utilization. The queuing delays are also approximately

linear in setup times and convex increasing in total utilization.

3.2 Model formulation

In the published model by Karmarkar et al. (1992), it is assumed that the demand and
processing times are constants. We use the expected value of processing times and
demand as an approximation since we are just looking for rough estimates of the
moments of transit times using relatively "good" lot sizes. Subsequently, we relax this
assumption and use random processing times as we calculate the transit times
corresponding to the lot sizes calculated. We account for the yield factor as we calculate
the demand for each stage. We divide demand arising at the inventory of the last stage by
the multiplication of the yield factors of all down stream stages, including the current
stage, to find the effective demand for a stage.

-16-




What follows is the model and analysis for a single stage which has to be repeated for
each stage.

Leti= 1..n index values for individual products and define

D; : Expected demand for item i (units/time)
P; : Processing rate for item 1 (units/time).

Q; : Batch size for item 1.

T; : Setup time for item .

X, : Processing time for a batch of item 1.

The expected processing time for a batch of item i is given by

Let \; = (%) denote the number of batches per time unit for item i. If we assume that a

batch arriving at a facility is selected randomly, the probability of selecting a batch of

item1is;

and the mean service time is ;

E[X] = Sm X,

or
TG (i + )
E[X]= - B
¢ Qy
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The mean waiting time in queue for this system is given by the Pollaczek-Khinchin

formula (Buzacott, I.A. and Shanthikumar, J.G. (1993)) as

EIW(Q)I = 51

PAXE
where the traffic intensity p = (AE[X]); A =3_A; and E[X?] = ‘53— . The average

time spent in the system by a batch is ( X; + E[fW(Q)]).

Here, the problem is to determine the batch sizes for each item that minimizes the
queuing delays of batches. This problem is represented by the following non linear

programming model ;

W =min_ E[W{Q)

i

S.T.

SR+ (Rg)) <1

i
The constraint is equivalentto p <1 .

3.3 Derivation of the heuristic rule for lot sizing

Following are the dimensionless quantities defined to simplify and clarify the

relationships involved in the derivation :
, the work center utilization due to item i

18-



u = ) u;,thetotal utilization of the work center
i

QG = (’%7 , a dimensionless batch size.
Pi = g = il batch size expressed as the ratio (run time/setup time)

§; == (?:117-) and s = Z s; , the proportions of time spent in setups for item i, and in total,
]

respectively.
t; = ( iﬁ_) , a dimensionless setup time.
T.
r 1
W= T a dimensionless waiting time in the queue.
¥;

K

Using this notation we can write the dimensionless mean queue time as ( following

Karmarkar et al. (1992) )

Tt (2) +2u +ulq))}
2 (1-Slghe)

— (8, + u;)?
=2 (zsz-{ 1—z:<sj+uj>})

From this expression, it is apparent that it is enough to specify u; and t; to describe a

problem instance. The domain of w as a function of's; is the interior set

S={s:> s <1->wu,s; >0foralli}
; ;

denoted by int S. Now we can state the problem as

w*=min w(s)
seint §
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Karmarkar et al. (1992) derive three closed form heuristic rules to find the lot sizes based
on bounds on w* and certain relationships that they establish, instead of using an
optimization technique to solve the model above. We elected to use the second heuristic
rule among the three since it outperforms the other heuristic rules and gives results close
to optimal in the experiments included in the paper, specially at utilization levels 70% or

higher. We give a brief discussion of this second heuristic rule.
Some relationships and bounds on w* that are presented and proved in the paper are

2wt = tﬁ{(:—f)z -1} for eachi

2 Ztaui
WL = Ty
2 Ztiui
Wu = Ty

and wp <w' <wy

The heuristic rule we seleced is obtained by assuming that utilization levels are high and
that w* >> t;. Using the relationship in the first equation above, this assumption leads to

the following

tl(gf)z = 2w*

ti
S; = Wy Iw*

The heuristic rule is then obtained by substituting wy; as an estimate for w* ;

or

20-



o o w(lw [ g
8 = U 2wy 2 thuj'
i

After the proper substitution, this expression translates into the following one that yields

the lot size, Q; ;

2P E:Tjuj
R i73 E
Q = (1-u) Ti

3.4 Estimation of the moments of transit times

We use the heuristic rule described in the previous section to find the lot sizes for each
product at each stage. This rule is based on the assumption that the processing rates or the
processing times are constant. We substitute the expected values of processing rates as
constant processing rates when we calculate the lot sizes. After finding the lot sizes, we
no longer assume constant processing times as we continue with the calculation of the
transit times, the time period that elapses between the release of a unit product from the
previous inventory and the entrance of the unit product to the current inventory. In this
section we explain how to get the first two moments of the transit times of a unit of a
product given that we use the lot sizes calculated. We define the moments for the
processing time of a batch of item i which we use to calculate E[W] and Var[W] later on.

The first moment is

ElX] = QE[r;] + 7
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where 1; represents the random processing time of unit of item i. Here, we assume that r;'s
are independently distributed, identical random variables. E{X? lis found using the

variance of X;, Var[X;];
E[X]) = VarX;] + (E[X;]Y
and the variance of X; is;
Var[X;] = Q;Var(r;]
E{X?] is found using the regular expectation formula by assuming that X;'s will have
normal distribution (X; ~ N(E[X;], Var[X;] ). This assumption is justified according to

the central limit theorem since X; is simply the summation of many independent random

variables. Hence ;
E[X$ = [ X} F(Xi) dX;

where f(X;) designates the density function of X;. The equations that follow yield the
first two moments and the variance of the waiting time of a batch in the M/G/1 system

(Buzacott, J.A. and Shanthikumar, J.G. (1993)). ;

_ AE[XY
EIW]= 705

_AERG] . NVEXP . AEXYEIX]
EW =50t 20 T @

Var[W] = E[W?] - (E[W])’

97



where E[X], E[X?! and E[X®] are the first, second and the third moments of the
processing times of a common batch, respectively. These moments are found using the

equation

YoAELXS]
BX*] = 4+——.

The average transit time of a unit of item i, T;, e consists of waiting time of a batch, setup
time for item i, waiting time for the processing of half of a batch of item i and the
processing time of a unit of item 1. That is ;

%o

Ti=W-+ 7 + Zl‘i

=]
Using this equation, we find E[T;] and E[T?] as follows ;

E[T;] = E[W]+ 7 + (% + 1) E[z]
Var[T;] = Var[W] + (% + 1) Var[r;]
E[T?] = Var[T,] + (E[T;])?

We are now ready to continue with the second step of our solution approach since the
first two moments of transit time of a unit for each product at each stage and the demand

rates are all we need as inputs for the second step.
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3.5 A numerical example

We give a numerical example here to illustrate the calculations for a stage. The
calculations go are identical across all stages. The difference in calculations for different

stages, obviously, will be the processing times and demand rates for each product.

In this example, we have a four-stage system with three different products being
produced. Stage 4 is the final stage in the production process. We show the calculations

for stage 2. The data for the example follows :

Available weekly capacity : 5 days/week x 8 hours/day x 60 min./hour = 2400 minutes.
Demand : 600 units/week , 190 units/week, 150 units/week for product 1, product 2 and

product 3, respectively.

Stage2 | Exp. proc. time | Var. of the unit proc. time | Process Rate Setup times
Prod. 1 .6 min/unit. .09 min®. 1.6667 units/min 10 min.
Prod.2 1.4 min/unit. A9 min?. 7143 units/min 15 min.
Prod. 3 1.6 min/unit. .64 min?. .625 units/min 35 min.

Stage 1 | Stage 2 | Stage 3 | Stage 4
Yield rate 9 .8 .85 7

Table 3-1 Data of the example problem

First we calculate the effective demand rates, D;'s, at stage 2 that account for loss due to

the yield problem;

D, = original demand of product i
t —  Productof the yield rates o f all down streamn stages including stage 2

Dy = 300/(8x.85x.7) = 630.2 units/week

Dy = 190/ (.8 x.85x.7) = 399.2 units/week
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D; = 150 /(.8 x .85x.7) = 315.1 units/week

The utilizations due to each product at stage 2 are ;

D
ui~P—i

u; = 6302/ (1.6667 x 2400) = 157
up =399.2 /(7143 x 2400) = 233
us = 315.1/(.625 x 2400) = 210

Total unitization at stage 2, u = .60 . Now, we can calculate the lot sizes for each product

using the expression given in previous section ;

2P ETjuj
— iTs 1]
Qi - (1-1.1) Ti

. 2x1.6667x10

{10x .157 + 15x 233 + 35x .210)

= 02 85 ~ 93 units

Q=g 10

Q= 2% 7143 x 15 \/(10x.157+15x.233+35x.210) = 4874 ~ 49 units

o (1-.6) 15

(10x 157 +15x 233 +35x .210)

Qs = 2X625%35
3 (1-.6) 35

= $5.14 =~ 65 units

Next we find the first two moments and the variance of the processing time of a batch for

each product corresponding to the lot sizes above,

E[X;] = Q:Elr;] +7;

E[X,] =93 x .6+ 10 = 65.8 min
B[Xy] = 49x 1.4+ 15 =83.6 min
E[Xs] = 65 x 1.6+ 35 =139 min

25.

Var[X;] = Q;Var[r;]

Var[X;] =93 x .09 = 8.37 min’
Var[Xy] = 49 x 49 = 24.01 min’
Var[X;] = 65 x .64 = 41.60 min’



E[X?] = Var[X,] + (B[X:])* (X% = [ X2 f(X,) dX;

E[X2] = 8.37 + 65.82 = 4338.01 min’ E[X3] = 286542.54 min®
E[X2] = 24.01 + 83.62 = 7012.97 min’ E[X3] = 590298.76 min
E[X2] = 41.6 + 1392 = 19362.60 min’ E[X3] = 2702966.17 min®

E[X3]'s were found by applying the regular expectation formula using Maple.

Demand rates in batches for each product are;

Ap = 630.2/93 =6.7763 batches/week
A = 399.2 /49 = 8.1469 batches/week
Az = 315.1/65 = 4.8477 batches/week

Total demand , A = 19.771 batches/week. The calculations for the moments of the

processing time of a common batch are

E[X] = (6.7763 x 65.8) + (8.1{196.27)(183.6) +(4.8477x139) __ 91.062 min

oy (6.7763 x 4338.01) + (8.1469 x 7012.97) + (4.8477x19362.60)
B[X*] = 19.771

= 9124.16 min?

E[X3] __ (67763 x 286542.54) + (8.1469 x 590298.76) + (4.8477x2702966.17)

16,771
= 1004196.67 min®
The traffic intensity is p = ’\2%)3] == 19'77214’:}901'062 =75 .Using the moments found

above and the traffic intensity, we calculate the first two moments and the variance of the

waiting time of a batch as follows;
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(19.771/2400) x 9124.16

by (19.771/2400)x1004196.67 . (19.771/2400)*x9124.167
E[W?*] = 3x(1-75) + (- 75)° +
(19.771/2400)x9124.16x91.082
(1-7%)

= 83605.44 min?

Var[W] = 83605.44 - 150.3% = 61015.35 min?
Finally, we are ready to find the first two moments of the transit times of a unit for each

product at stage 2 .

E[T;] = 1503 + 10+ (% +1)x.6 = 188.8 min
Var{T;] = 83605.44 + (£ +1)x.09 = 83609.71 min*
E[T2] = 83609.71 + 188.8% = 119255.14 min’

E[T,] = 150.3 + 15+ (£ +1)x1.4 =201 min
Var[Ty] = 83605.44 + (£ +1)x.49 = 83617.93 min?
E[T2] = 83617.93 + 201% = 124018.93 min®
E[T3] = 150 +35 + (£ +1)x1.6 =238.9 min
Var[T3] = 83605.44 + (£ +1)x.64 = 83628.88 min®

E[T%] = 83628.88 +238.9% = 140701.54 min?

Tt can be seen that the waiting time of a batch dominates the results in this example.
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We have also calculated the waiting time of a batch corresponding to two sets of lot sizes.
In the first set, lot sizes are fixed at approximately half of the lot sizes we calculated in
the example and in the second set, approximately three times those values. The lot sizes

and the corresponding waiting times are the following;

L Q=45 Q=25 Qy =32 E[W] = 282.12 min
I: Q=300 Q=150 Q3=200 E[W]=237.02 min

This brief sensitivity analysis shows the fact, explained in Karmarkar et al. (1992), that
having smaller lot sizes than the optimal ones affects the waiting time much more
drastically than having larger lot sizes. The waiting time calculated in the example was

E[W] = 150.3 min.
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Chapter 4
The Base-Stock Inventory Control Policy

4.1 Introduction

In this part of the report, we present the model that relates the base-stock policy
parameters to the system performance measure, namely the fill rate. This model is a
modified version of a published model by Svoronos and Zipkin (1991) for arborescent
network structure. We modified the model to take the yield issue into account and used

the modified model to analyze our serial system.

As we stated earlier we assume that demand occurs at the last stage inventory and it is a
Poisson process. Each stage follows a base-stock, or (S-1,8), or .one-for-one
replenishment policy. This policy requires a single parameter S > 0, base-stock level for

each stage.

If we assume that a system with four stages starts with inventory levels equal to base
stock levels at each stage, every single occurrence of demand at the last stage causes an
order to be placed with the inventory of the third stage. In turn, this order becomes a
demand for the third stage and an order is immediately placed with the second stage
inventory, etc. Thus, every demand at the last stage results in an order being placed

against each stage inventory in the system, immediately.

A demand at the last stage inventory is satisfied immediately if there is inventory or after
a delay if backordered. But for the previous stages, a demand is always satisfied after a

time period. This time period involves both a delay time associated with the previous
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inventory and a transit time due to the production activities. Both the delay time and the
transit time are stochastic variables. The transit times in our model are assumed to have a

gamma distribution.

Svoronos and Zipkin (1991) assume that the orders are processed sequentially and do not
cross in time; that is, a FIFO queuing discipline is followed. This is not an issue in our
model since we analyze the system one product at a time after finding estimates for the

trangit times at steady state and, hence, there is no difference among orders.

Another important assumption of theirs is that the transit times are independent of the
demands and orders in the system. This assumption is justified if we suppose that there
are many orders in the system at steady state so that our units comprise a quite small
portion of the total workload. It is as if the transit times are determined by observing a
queuing system at steady state and we do not influence the transit system by the decisions
we are making. The estimates of the moments of the transit times that we found in section

3.1. are of this nature.

Some useful features of the model are that the lead times are assumed to be stochastic
and, not only the mean of transit times is important in the model, but also the variance of

transit times matters.

4.2 Notation

A . Expected demand rate.
T; : Transit time before stage i, the random time from the release of a unit by the

inventory of stage i-1 until the receipt of the unit at the inventory of stage .
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Fr, : Distribution of T;.
(T;'s represent the transit times when the system is in equilibrium, so Fy; is the steady
state distribution of transit times.)
S; @ Base-stock level for inventory of stage i. (The decision variables of the model)
What follows are the random variables describing the equilibrium behavior of the system.
These variables are dependent on transit times and base stock levels.
D; : Delay after inventory of stage i, the time from the order of a unit by the inventory
of stage i+1 until the release of the unit by the inventory of stage i.
1; : Total lead time of stage 1.

=Dy..1 +T;

Let Fp, and F;, denote the corresponding distributions.

L; . Inventory at stage 1.

B; : Backorders at the inventory of stage 1.

K; . Number of outstanding orders at stage i.
=58 - L + By

The densities for these variables are denoted by g, gp, and gg, respectively. For any x,

let [x]T = max {x,0}

4.3 Analyses for a single stage

We will drop the index i as we analyze a single stage. The steady state behavior of the
system is described by the random variables I, B,and K =S -1+ B with densities g7 , €5
and gy . The delay time that an order waits as a backorder is another variable that we are

concerned with. Let D denote a customer delay in steady state and Fp its distribution.
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The following are the two key results presented and proved in Svoronos and Zipkin
(1991} :

a) The variable K has the same distribution as the lead-time-demand , the number of
demands in a random time with distribution Fy, .

b) The variable B has the same distribution as the order-delay-demand , the number of

demands in a random time with distribution Fp .

These results can be represented exactly in terms of transforms: Let 7p and 7¢ denote the
z transforms of the densities gp and gy respectively, and T and T p Laplace transform

of the distributions F;, and Fp, respectively. Then ;

Tr(z) = T [A(1-2)]
75(2z) = Tp[A(l-z)]

Given F,, we can compute 75 using the first equation above. Then, inversion of 7x gives
us gx with which we obtain the densities of I and B since I = [S-K]* and B = [K-S]*. By

using the density of B, g, we can find Fp using the second equation above.

This procedure involves many transform inversions which could turn out to be difficult.
Therefore, in the next section we explain an alternative approximation method that uses

only the first two moments of transit times.

4.4 Analyses for the serial system using two-moment approximation

We can approximate the procedure explained in the previous section by assuming a

parametric family of densities for gx,. Each gg,, then, is characterized by specifying the
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first two moments at each stage. Here, we select the negative binomial family. This is
equivalent to assuming that lead times have gamma distribution from the first of the
transform equations above.

For a single stage, the following equations can be derived using both transform

equations :
E[K]= A E{L]
E[K(K-1)] = A% E[L?]
E[B]= AE[D]

E[B(B-1)] = \? B[D?]

If we assume that we know EfL] and E[L?], we can find E[K] and E[K(K-1)] from the
first two equations above. This also yields V[K]. Since now we know E[K] and V[K] and
assume that gx has a negative binomial distribution, we can calculate the parameters n,p

for gx in the following way :

EIKI= 7y
VIKI = {17

1. HK]
p=1- 9
n= QB K]
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Now, we are ready to find the moments for B using the relation B = [K-S]* since we
know gg . Let € = 15 and Jet Gk denote the complementary cumulative distribution of K.
Then, using the standard formulas for expected values, and after some modifications, we

get the following equations :

E[B] = (ne -8) Gy(S-1) +(1+¢) S gx(S)
E[B(B-1)] = [n(n+1) e2-2ne S + 8 (S+1)] Gr(S-1)
+[(+]) € - (S+1)] (1+€) S gx(S)

We use gx and Gy, that we already know, to evaluate these equations. We substitute
E[B] and E[B(B-1)] into the corresponding equations given before to find E[D] and
E[D?] and, then, V[D].

The linkage between stages are provided by the following equations;

E[L;}=E[D;_4] + E[Ti]
V[L;] = V[Dj-1] -+ V[T

For the first stage ;

E[L,]=E[T4]
VL] = V[T]

since an infinite supply is assumed before the first stage and, hence, there is no delay

before the first stage.
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Starting with the first stage, we can calculate the E[D;} and V[D;] using the method
described since we know E[L,;] and V{L,] . Given E[D,] and V[D,}, we can find E[L,]
and V[L,]. Using E[L;] and V{L;] we calculate E[D;] and V[D,]. We iterate in this
fashion until the last stage where we finally get the values of E[K,,,| and E[B,,|, where m
is the number of stages. These values are plugged into the following equation that yields
the fill rate (FR), our system performance measure, as a percentage :

FR = [1- £e=}] x100

This equation gives us the fill rate since E[K,,] is the expected number of outstanding
orders in steady state at the last stage and E[B,,] is the backordered portion of E[K,,] that

is not satisfied directly from inventory.

The main advantage of this two-moment approximation method is that it only requires
first two moments of the transit times to be known (or estimated). How good the
approximation performs is entirely dependent on how well a gamma distribution

represent the lead times in the system.

4.5 Addition of yield factor to the model

We have to modify the two-moment approximation model since our problem description
additionally involves yield issue. Yield was assumed to be a unit-by-unit binomial
process in the problem description section. That is, a unit can turn out to be good or bad
after processing with the probabilities of p and (1-p) respectively and there is no
correlation among units in terms of these probabilities. We assume these probabilities are
stage dependent.
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If we consider a single stage, the number of units to be processed until we obtain a good
unit is, excluding the good unit, negative binomial variable by definition. Let y; denote
the probability of obtaining a good unit and N the number of units to be processed to get

a good unit. The probability equation of negative binomial variable (X) is

P(X=x)= (Xﬁ‘{ 1) ok (1-p)*

where x is the number of failures before the kth success in Bernoulli trials with success

probability p and failure probability (1-p). Mean and variance of X are

k(1
E[X]x (pp)

k(1-
vx] =
In our case, p = y; and k=1. Using these equations, we find E[N] and VIN] as follows ;

0¥ 4y = 1
E[N] = 422 4

£

The first term in the equation above is the expected number of bad units before

encountering a good one and plus one is for the good unit and the variance of N is ;

The time that it takes for a good unit to pass through a stage is the summation of N transit

times. This is a summation of a random number of random variables. Hence, the expected
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time that it takes for a good unit to pass through a stage (expected adjusted transit time

E[AT)) is

E[AT] = E[N] E[T]
= LE[T]

and the variance of AT is
VI[AT] = V[T] E[N] + V[N] (‘E[T])2

This variance is analogous to the variance of lead time demand in inventory models
where both lead time and demand are random variables. Here, lead time corresponds to N

and demand to transit time.

By replacing the transit time with the adjusted transit time in the model we take the effect
of yield on the transit times into consideration. Another modification we need to make is
to adjust the demand on the inventories of each stage. Since there is a yield problem, the
demand arising at an inventory is the original demand divided by the multiplication of
yield factors of all down stream stages. Following is the expression that gives this

demand value for the inventory of stage i ;

)\im

ki3
HYk

k=i 1

This demand value is basically the required input to the binomial yield processes, through

the down stream stages, whose expected output is equal to the original demand, A.
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Chapter 5
A Search Heuristic To Find "Good" Base-Stock Policy Parameters

3.1 Introduction

Base-stock control policy model we presented in the previous section is a highly
nonlinear one due to many random variables, such as inventory levels, backorders,
number of outstanding orders, involved in the model and the interaction of these
variables. Our attempts at solving this nonlinear model using LINGO, a linear and
nonlinear model solver, yielded no results because of the inability of the software to deal
with this nonlinear system. It is not difficult to guess that there would not be many solvers
that can solve this model, if there is any at all. We think that troublesome complexity
associated with the model is due to the constraints that enforce a certain fill rate involve
both cumulative complementary distribution functions and density functions of the
negative binomial variables. The objective also involves these functions. Therefore, we
resort to developing a search heuristic for the solution. Solution means setting the base
sock levels, the decisions variables, to certain values so that we minimize the system

inventory holding cost as we keep the fill rate above a predetermined level.
The search heuristic involves two main parts. The first part initializes the system by

setting the base-stock levels so high that there wont be any delay while the second part

tries to reduce these levels.
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5.2 Phase one : Initialization

Phase one of the heuristic simply finds a set of base-stock levels as a starting point for
phase two. This starting point is the set of base-stock levels that results in zero delay time
at every inventory in the system. In another words, in this part of the heuristic the base-
stock levels are set so high that all demand at any inventory in the system is satisfied
directly from the inventory with a very high probability. This means lead time for a stage
will be equal to the transit time of the stage since there would be no delay time. Fill rate

will obviously be very close to 100 % after applying the first part of the heuristic.

Initialization of the system is accomplished stage by stage, starting with the first stage, by
increasing the base-stock levels gradually until the delay associated with the inventory of
the stage becomes approximately zero. The delay associated with the previous inventory
is set to zero as we carry out the calculations for the current stage since it will be

approximately zero after initialization.

5.3 Phase Two: Search

Phase two of the heuristic attempts to reduce the base-stock policy parameters,
systematically, in order to decrease the expected system inventory holding cost while it
obeys the restriction that the fill rate must be greater than or equal to a predetermined

value.

In this second part of the heuristic, at each iteration, the associated system inventory

holding cost per percent (INCPP) of the fill rate is found as follows
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INCPP = CURRENT SYSTEM INVENTORY HOLDING COST
CURRENT FILL RATE

Then, each base-stock level is reduced, in turn, by a certain step size and the gain in terms
of the expected system inventory holding cost is calculated for each reduction. Since each
reduction causes the fill rate to drop, also calculated is the /oss due to each reduction.

This loss is defined as follows

LOSS = INCPP x AMOUNT OF PERCENT DROP IN THE FILL RATE

The reduction that has the highest gain to loss ratio and that does not violate the fill rate
restriction is carried out. For a certain reduction step size, the search procedure iterates
until there is no reduction that yields a fill rate greater than the required one. At this point,
the step size is reduced and the iterations restart with the new step size. The search
procedure stops when the step size is one and there is no possible reduction of base-stock
policy parameters. The flow charts of the first and second phase of the heuristic are given

below.
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step = 10060
€ =10
i =1

) 4

Si=8;+step +

y

Find D associated with
inventory i using the analytical
model. Take Dia1 as zero

No

Si=Si -step
step = step/10
{(step is an integer)

Y

Yes

=i+l
step = 1600

Next phase of
the heuristic

Figure 3-1 Flow chart of the phase one of the heuristic.
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Apply first phase
of the heuristic

v

fr=100

rfr =95
stepdiv=1.2

step = min { 5;}/10

}

Calculate system

inventory holding cost,
TC and Fili rate, fr, using

the analytical model.

]

Find the value of 1 %
satisfaction ,v

v ="TC/r

Calculate current system
inventory holding cost, CTC
and current fillrate, cfr using
the analytical model

!

Desty =TC ~CTC
Afy; =fr—efr

Y

Si=8;+step

Find the benefit index for the
reduction i

bi=Dest; / (Dfrixv)




*

]

Find the reduction i that ;

- does not violate the fill rate
requirement
fr - O <= rfr
- is the largest
bi» = max { b; }
i

step = step / stepdiv
(step is an integer) 1

Figure 3-2 Flow chart of the phase two of the heuristic.
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Notation used in the flow charts is explained as follows;

1; Index for the stages of the system.

m ; Number of stages.

S, ; Base-stock level at stage 1.

D; ; Delay associated with the inventory of stage 1.

fr ; Fill rate of the system.

tfr ; Required fill rate.

crf ; Current fill rate of the system after the reduction of a base-stock level.

TC ; Total system inventory holding cost.

CTC ; Current total system inventory holding cost after the reduction of a base-stock
level.

Acst; ; Reduction in total system inventory holding cost due to the decrease in base-stock
level i.

Afr; ; Reduction in fill rate of the system due to the decrease in base-stock level i.

stepdiv ; step division factor which is used to divide the step size in order to get the new

step size.
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Chapter 6

Experiments And Simulation :

6.1 Experimentation With The Analytical Model

We have coded the analytical model and the heuristic search algorithm that uses the
analytical model in Fortran 77. We have used Fortran 77 so that we could include the
binomial probability subroutine from the IMSL library of Fortran 77. This subroutine
returns a probability from the Binomial distribution for any given set of distribution
parameters. We also have coded a small program in C to produce random problems for a

four-stage system where the closest stage to the infinite supply is labeled as stage 1.

We have produced 20 random problems using our small program. Each problem instance
includes demand rate and, for each stage, alpha and beta values that determine the transit
time, unit inventory holding cost and yield rate. We fixed the range [3-7] for demand rate,
[2-5] for alfa, [2-4] for beta and [.65-.95] for yield rate. Unit inventory holding cost for
stage 1 ranges from 5 to 30 and inventory cost for the following stages are found by
adding a value in the range [1-25] to the previous stage unit inventory holding cost. Table

4-1 shows these problems.

We have run the program for these random problems. The fill rate is fixed at 95 % for all
the problems. Output of the program is the base-stock levels for each stage that are
approximately optimized using the search heuristic described earlier, expected inventory
and backorder levels at each stage and total system inventory holding cost. We compare

these results with the simulation results in the next section.
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ot

'"8'882”76 T

1 3

2 6 18 30 49 69 9390 82 85
3 7 19495879 71787173
4 6 6202653 67 89 89 88
5 5 12 38 65 83 91 818275
6 7 265278 84 74857371
7 4 28334861 66 65 91 82
8 3 18234871 81768578
9 5 13204551 66 87 84 82
16 6 24435872 7269 75 91
11 3 1226 55 61 70827972
12 4 3047 7787 7373 8172
13 3 1626 31 42 7172 83 68
14 7 28537199 89 8573 90
15 7 192634 46 8079 91 85
16 3 2543 57 82 8092 85 81
17 7 18414761 86 72 90 86
18 7 16 30 37 44 75 8979 69
19 4 23528299 71759481
20 7 133563 80 70 94 70 90

Table 4-1 Data of 20 random problems

6.2 Simulation Comparisons

We have build up a simulation model of the base-stock inventory policy for a four-stage
serial system using SIGMA (Schruben, L.W. (1995)), a system simulation software. We
have simulated the system using the data set of each problem for 7500 time units and
calculated the average inventory levels for each stage. In the following table we give the

results from the analytical model and the simulation experiments.
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Z YK = -

1 48.80 46.40 5.18 24887.62 | 23778.68 4.66
2 64.73 63.12 2.55 71760.52 | 71742.03 0.03
3 184.70 178.99 3.19 138040.40 | 137542.80 | 0.36
4 89.96 87.14 3.24 43322.45 | 40551.22 6.78
5 127.45 123.64 3.09 85837.09 | 85563.04 0.32
6 191.72 186.57 2.76 191042.40 | 190693.50 { 0.18
7 115.02 108.85 5.67 76854.78 7640.32 0.54
8 59.63 57.85 3.08 26409.42 | 26273.53 0.52
9 167.49 159.77 4.83 41439.79 | 41092.49 0.85
10 57.42 53.26 7.81 20355 19937.78 2.09
11 110.03 112.62 2.30 121638.80 | 121544.30 | 0.08
12 77.10 74.36 3.70 41833.66 | 41621.33 0.51
13 82.04 79.22 3.56 137742.40 | 137360.20 | 0.28
14 113.11 110.83 2.59 49890.82 | 49795.87 0.19
15 69.92 65.82 6.22 4804930 | 4762234 0.90
16 186.53 176.73 5.56 6372133 | 6330631 0.66
17 53.83 50.94 5.68 32710.17 | 32458.19 0.78
18 144.40 139.55 3.48 114448.80 | 114151.60 | 0.26
19 252.80 243.47 3.83 102758.90 | 102237.60 | 0.51
20 70.49 66.23 6.43 9176370 ; 91261.66 0.55
Average error | 4.237 Average error | 1.052

Table 4-2 Results from analytical and simulation models

We conservatively fixed the simulation warm-up period at 750 time units for each
problem based on our observation of the output plots of different problems. We selected
the inventory level of the last stage and the system inventory holding cost as the criterion
to compare the analytical results with simulation results since these two are the most
important and most representative measures in terms of approximation ability of the

analytical model.
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For all the problems, fill rate of the simulation experiment was greater than required 95%.

The error values in the table are given by

160*[Simulation result-Analytical result|
Simulation result

Y% error =

These results suggest that the analytical model vields good approximations, especially for
system inventory holding cost. For all the problems, the analytical model slightly
overestimated both the expected last stage inventory and system inventory holding cost.
This could be because of an overestimation of the first two moments of transit times in

the analytical model when we adjust them to account for the yield effect.

The analytical approximation was relatively poor for the problems where the search
heuristic yielded high expected backorder levels relative to base-stock levels in some
stages. This is understandable because high backorder levels lead to non-gamma lead
time distributions and the analytical model is based on the assumption that the lead time
distribution can be closely approximated by a gamma distribution. As a remedy we can
force the backorder not to be too high for any stage while we are doing the search. This
will smooth out the backorders across stages and help the analytical approximation
improve. Moreover, since in a production environment, the required fill rate generally is
expected to be greater then 95%, the chance of finding solutions with high backorder

levels at any stage will be small.

6.3 An Improvement To The Search Heuristic

In the phase two of the heuristic, we select the reduction that has the highest gain to loss

ratio, as we defined earlier. To add in some diversity to the search such that the procedure
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is less likely to settle for an inferior local optimal solution, we suggest random selection
among feasible reductions. This selection, however, is not completely random. We give
weights to the candidate feasible reductions proportional to their respective gain to loss
ratios so that the larger the gain to loss ratio of a reduction is, the better chance it has to

be selected. We include this modified version of the code in the appendix as well.

For any problem, we iterate a predefined number of times and at each iteration we find a
solution to the problem. At the end of the iterations we get the output as the minimum
cost solution among the solutions produced. This means the improvement comes along

with a computational cost.

We have modified the code of the search heuristic and run this improved version of the
heuristic for seven problems among the problems used before. We set the number of
iterations to 20 for all the problems. The following table shows system inventory holding

cost from the original and the improved versions of the search heuristic.

tevious result | Improved tesulf | % iniprovenicht
71760.52 70680.52 | 1.5
138040.4 134712.5 2.4
85837.09 8272417 3.6
76854.78 69166.76 10
26409.42 2294372 13.1
12 41833.66 38439.65 8.1
13 137742 .4 137692 .4 04
Average 5.53

Table 4-3 Improved results

The result table basically shows that the improved version of the heuristic has the

potential to give better results. It is not difficult to see that the improvement can increase
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as we increase the number of iterations which translates into computational cost. For
example, in our experiment, the computational cost of the improved version of the
heuristic is 20 times that of the original heuristic since we set the number of iterations to

20 in the improved version,

6.4 Conclusion

The problem of the determination of a base stock inventory control policy for a
production system with several stochastic features is a very complex one due to the many
related random variables and their interaction. In this report, we have tried to simplify
some of the decisions involved in an approach to identify base stock inventory control

policies for serial production systems.

Our approach provides decisions that one needs to make in a realistic setting when
determining an inventory control policy in a production system: lot sizing decision,
modeling an inventory policy and fixing the parameters of an inventory policy to yield

cost effective results.

We have used published models as a basis for the first two parts of our approach, after
some modifications and additions to tailor them to our problem. As part our approach, we
have developed a heuristic search method based on marginal benefit analysis to set base
stock levels in the new model. The analytical model provided excellent approximation

results when compared with those of a simulation model.
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