A Multicommodity Flow Model for
Manufacturing Planning Over
Alternative Facilities

S. David Wu
Hakan Golbasi
Lehigh University

Report No. 98T-004



IMSE Technical Report 98T~ 0°¥, Lehigh University
Submitted to Management Science

~

A Multicommodity Flow Model for
Manufacturing Planning over Alternative Facilities

S. David Wu and Hakan Golbasi
Manufacturing Logistics Institute, Department of IMSE, Lehigh University,
Bethlehem, Pennsylvania 18015

Abstract

We propose a planning model for multiple products manufactured across multiple
manufacturing facilities sharing similar production capabilities. The need for a
responsive product and capacity management framework is most evident in the fast-
growing electronics and semiconductor industries. Our model is based on an emerging
practice in these industries where product managers from varies business units dictate
production planning across manufacturing facilities equipped with technologies to
produce their products. We propose a multicommodity flow network model where each
commodity represents a product manager’s view and the network represents linked
manufacturing facilities capable of producing the products. We proof that the single-
commodity, multi-facility subproblem can be solved in polynomial time. We then
develop a Lagragean decomposition, which separates the planning decisions into a
number of product manager subproblems and a resource subproblem. Using subgradient
search, these subproblems each propose solutions from its own perspectives while the
Lagrangean multipliers penalize solution conflicts. The model structure and the solution
methodology allow much flexibility for extensions in product and resource subproblems.
We demonstrate that the base model can be solved efficiently with very small duality
gaps.



1. Introduction

This research is motivated by production problems in the electronics, semiconductor and
telecommunication industries. These industries struggle with their production planning problems
in an increasingly complex supply chain structure. Specifically, to better utilize their capital-
intensive equipment they are pressured to produce a wide variety of products in each of their
production lines. However, these products may each belongs to a different supply chain
operating under different delivery contracts, demand characteristics, and subcontracting
agreements. As a result, detailed planning decisions are often relegated to product managers
who are most familiar with their specific customer and supplier issues. On the other hand,
resource consolidation and capacity management issues must be considered in a globally
consistent fashion within each manufacturing facility.

Coordinating production under complex supply structure is not a new problem.
However, two recent trends in these industries exacerbate the intensity of the problem. First, the
trend toward increased market responsiveness intensifies the inter-dependency within the supply
chain. In the past, excess inventory was generally used to reduce the impact of variation across
different facilities. Today, most manufacturers are moving away from carrying substantial
inventories, a trend that can be attributed to the widespread application of just-in-time
manufacturing. Second, the rate of technological innovation significantly shortens the life span
of manufacturing equipment, which in term increases the cost of manufacturing capacity. This
combined with increased product variety and decreased product volumes prompt manufactures to
cross-load their manufacturing facilities.

In this paper, we focus our study on the operational planning issues faced by the
manufacturing facilities in this increasingly complex environment. The subject of supply chain
management has attracted a lot of attentions recently. Quantitative analysis of supply chain
issues are most commonly addressed using extensions of multi-echelon inventory models.
Cohen and Lee (1988)(1989), Sterman (1989) and Davis (1993) are among the pioneers who
made significant contribution in this area. Various development of these models is currently an
area of active research (c.f, Lee, et al. 1995, Hahm and Yano 1995a,b and Arntzen, et al, 1995).
A related line of research focuses on the extension of decision models in the traditional MRP
systems (c.f. Billington, et al,, 1983, Carlson and Yano, 1983, Gupta and Brennan 1995). This
paper extends beyond the current literature in three important ways:

1. Whereas much of the supply chain literature focuses on the design and analysis of the
entire supply chain, we focus our attention on the operations planning issues faced by
manufacturing facilities sharing common production capabilities. Rather than
decoupling multiple supply chains so that they can be treated in isolation we examine



a model which integrate decisions across multiple supply chains from the vintage
point of manufacturing facilities.

2. Current literature emphasizes on applications in build-to-stock retail and distribution
environments, this work attempts to mirror the practice in build-to-order

- manufacturing environments.

3. Most existing work ignore the trend that decision making in industrial environments
are increasingly distributed, localized and product oriented. We propose a
multicommodity flow model which has a build-in structure for product based
decomposition in a multiple-facility environment.

From a modeling point of view our model is most closely related to the literature in
multi-level, multi-period lot-sizing models with limited capacity. A number of survey articles
(c.f, Bahl et al. 1987, Goyal and Gunasekaran, 1990; Baker 1993; Kimmms 1997) provide an
excellent review for research in this area. Our proposed model has two distinctive features that
are not addressed in the existing literature. One is the explicit consideration of facility selection
decisions. Most existing work assumes either a single facility, or multiple tiers of facilities as
defined by the product structure, but no facility selection decisions are included. Second, we
propose a solution method using the notion of Lagrangean Decomposition (Guignard and Kim,

1987) and variable splitting (Jornsten 1986). This allows us to decompose the model into a

resource subproblem and a number of product subproblems. The decomposition allows rich
potentials for the model to be expanded to include product-specific considerations and facility-
specific submodels. Lagrangean decomposition Similar approach to the single-facility case has
been proposed by Thizy (1991) and Millar and Yang (1993). A key to the success of our
solution method is that we proof the multi-facility, single-product subproblem with setup is
solvable in polynomial time.

2. A Multi-Facility Production Model

We now consider a multi-facility production problem where a set of end items i3 to be
produced in multiple facilities over multiple stages and multiple periods. Each end-item has a
bill of material described by a product structure. There is an underlying supply structure where a
set of alternative facilities could be setup to produce each item described in the product structure.
Figure 1 contains an illustration of the product and the supply structure. The product structure in
Figure 1 can be represented by a typical “gozinto” structure, widely adopted in the lot-sizing
literature. The gozinto structure is specified an nxn matrix [ay] where ayis the number of item
that is (directly) needed to produce one unit of item £ In additional to the gozinto structure we



define the supply structure matrix [ryj] where ry =1 if facility j could be used to produce item 7,
and r; = 0 otherwise.

o

Figure 1. A Supply Network with Three End-Items, Six Facilities and a Maximum of Three
Alternative Facilities for an Item

2.1 A Multicommodity Flow Model

The above multi-facility production problem is complex in that the facility selection
decisions are combined with multi-item, multi-stage, multi-period production decisions. To
approach this problem we first take the viewpoint of a subset of manufacturing facilities in the
supply network. Each manufacturing facility is capable of producing a variety of products
(items). We consider the production of multiple products (i=1,2,..,n) over multiple periods
 (#=1,2,..,T) where each item J can be produced using one of a specified set of alternative
production facilities (j=1,2,.., J; ). Each facility can be setup to perform a limited number of
production processes with a setup cost. Now consider a multicommodity flow network G(N,A)
where each item i corresponds to a commodity in the network Let D; ' denote the internal
demand for item 7 in period ¢ based on the end-item demand and the product structure. Suppose
D,' can be generated a priori, we can then define a multicommodity network as shown in Figure
2. This multicommodity flow network has three parts: a set of source nodes, a set of sink nodes,



and a set of production submodels in between. Each commodity (product) 7 has a source node s,
and T sink nodes d ', one for each period t.

The input flow for source node s' is the total demand over T periods for item i (J//~; D/,
and the outflow on sink note d ; as the demands for item 7 in period #,(D/). The arcs going from
the source nodes s to the facility subnet j represent facilities that could be setup to produce item
i. These arcs are specified by the supply structure matrix, i.e., there is an arc (3,j} for each non-
zero entry of matrix [y ]. The subnetworks between the set of source and sink nodes represent
production facilities shared by multiple items. The production resource subnetwork is to be
“customized” according the structure of the particular manufacturing facility. For example, the
simple structure in Figure 2 shows the familiar multi-period dynamic lot sizing model which can
be used to represent individual production lines. This can be easily extended to a multi-stage
model (c.f,, Afentakis 1984) also shown in the figure, or other multi-period models. A variety of
production line models in the literature (c.f,, Graves 1992) could be incorporated in this general
framework. Throughout this paper, we use the dynamic lot-sizing model to demonsirate the
general structure of the supply-chain planning model. The arcs going from facility subnet j
period 7 to sink node ¢ '; represent the fact that the demand of item i in period # can be satisfied
by the production and/or the inventory from all of its alternative facilities.

Bach arc in the network is characterized by (f,c', u): arc flow f', per unit cost ¢’ and arc
capacity #. The interpretation of these values varies according to the types of arcs. The arcs
going from the source nodes §' to the facility subnet j are facility selection arcs 4s < 4,
charaterized by (¥, ¢, uy): x; represents the total production to be performed on facility j over
t=1,..,T, the arc cost ¢; can be used to quantify differences among facilities (e.g., quality
reputation), and capacity uy represents the maximum amount of item / that can be produced in
facility /. When the dynamic lot sizing model is used as the production submodel, there are two
types of arcs within the subnet: arcs going from left to right are production arcs Apc A4,
characterized by (x4, ¢, capy): production volume x’, unit production cost ¢ ,and production
capacity capy = #. Arcs going from top down are inventory arcs A;c A characterized by e Ay,
invy ) : inventory carried from period t to t+1, 7 ', unit inventory holding cost ¢/ and inventory
limit #mv; = . Finally, the arcs going from facility j period  to sink node d ', are demand arcs
AacA, charcterized by (b, 'y, capy): facility j's contribution to demand D', b, transportation
cost ¢’y ,and transportation capacity in period £, capy.
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Figure 2. A Multicommodity Flow Network for a Three-Item, Three-Facility, Four-Period
Model

Given the above specification, we can define the general multicommondity flow constrains (1.1)
and (1.2) as follows:
General arc capacity constraints for all arcs
X, Su, (i, e A,
Zn:ﬁ;f;;guﬁ V(,Ded, w4, VA, (1.1)

f=]

Denote N the node-arc incidence matrix for the multicommedity flow network G(N,A) and ¢’ the
net balance flows for commodity i, The mass balance constraints are as foilows:

Mass balance constraints for each commodity
Nfl=e VieN (1.2)

In addition to the general multicommodity flow constraints as specified by the network structure
G(N,A), we may need to define additional constraints for each facility submodel. Consider the
multi-period lot-sizing model we use for all facility subnets. The inventory balance constraints
are already included in the mass balance constraints (1.2). However, we will need to define
additional constraints due to setup. Let oy denote the rate of capacity consumption for setup



activities, ¢ 2 binary variable indicating the existence of a setup for item / at facility j at period
1. The production specific constraints are as follows:

Production capacity constraints for production and setup
n J;

ZZ(ﬁ;t'x;t +a;t§;£)scapﬁ v(]:r)@Ap (21)

j=l =1

Setup constraints
x, < Mg, VieN,(j,H)e 4, (2.2)

Up to this point we ignore the fact that the items entering the production facilities (as
represented by the multicommodity flow network G(N,A)) has an underlying product structure
[as]. To model the supply structure as well as the product structure across multiple tiers of a
supply chain, we will need to include additional constraints which specify the relationship among
demands of items over time I, i=1,...,n, t=],..,T. First of all, the demand for end-items, Ny <
N, must be satisfy. Although this is already implied in the mass balance constraints (1.2), we
will restate it for clarity.

Demand for end item must be satisfied

b, =D; VtieN, (3.1)
i=

The end-item demand triggers the internal demands in the supply chain as defined by the product
structure. Denote L the lead-time for item &, we can define the following relationship:

Demand internal the supply chain must be satisfied in each period

b= a,D; Vt,ie N-N, (3.2)
Jj=1 k=1

Denote ¢, and 4, respectively, the production and the inventory holding costs for item 7 at
facility j during period # and K, the set-up cost for item / at facility j. We define a linear
objective function with two main components: (1) a cost function Si(f",¢’,u) defined based on the
supply chain requirements specific to item J, and (2) major cost components defined based on the
production submodel. A linear multicommondity flow formulation of the multi-facility
production problem (P) is given by:

Problem (P):

AR

N A
Minimize 2= S (fu.Cytt, )+ 2, 2 > (X, + K8, +1,1,)
i=1

=1 iz} j=l



S
<General Multicommodity Flow Constraints (1.1)-(1.2)>
<Production Specific constraints (2.1)-(2.2)>
<Supply Chain Specific Constratins (3.1)~(3.2)>
(4} nonnegativity constraints

Fiox,, 84,10, b, 20

PR R TR L
(5) binary constraints

&, €(0,1)

It is useful to note that in this multicommodity flow model, only the arc capacity
constraints (1.1) and (2.1) are bundling constraints. All the other constraints can be decomposed
by commodity. (P) is a multi-period, multi-item, multi-facility production planning model. The
base model can be expanded in two directions: (1) incorporate product-specific supply chain
constraints in each commodity subproblem, and (2) incorporate facility-specific production
submodels and focus on facility selection decisions. The former is the focus of a related paper
by (Meixell and Wu, 1998). In this paper, we focus on the latter facility selection problem. In
the remainder of the paper, we explore several special structures of this problem and propose a
solution methodology.

2.2 Model Analysis

Note that since the mass balance constraints (1.2) imply » b, =D,,Vie N, constraints
J=l

(3.2) in effect specify the relationship between the demands of item 7 and the items (4°s) which
use I as a component, i.e.,

D} = f:afkpﬁww,i e N-N, (3.3)

=1

Consider a set of facilities in a manufacturing supply chain as depicted in Figures 2.

Suppose the end-item demand is stationary, the relationship in (3.3) suggest that it is possible to
generate I, a priori using a BOM explosion mechanism frequently used in MRP systems, t.e.,

we may treat D' as parameters generated and fixed a priori for the multicommodity flow model
such that (3.2) is always satisfied. This simplifies the facility selection decisions considerably
since we do not need to make multi-tier production planning decisions at the same time. The two
decisions are often considered separately in practice since demands across different tiers of the
supply chain are decoupled by built-in leadtime and inventory buffers. For the product-focused
extension of the base model (Meixell and Wu, 1998), the multi-tier production planning problem
is examined in greater detail. '



As stated above the model (P) can be decomposed by commodity after relaxing the
bundling capacity constraints. Different decompositions of the multicommodity flow problems
are well documented in the literature (c.f, Assad (1980), Kennington and Helgason (1980)).
Consider for a moment the capacity-relaxed single-item, multiple-facility subproblem for
commodity 7 as follows:

T 4
(P)  Minimize S(fj,,cﬁ,uﬁ)+;Z(cjtxj, +K .5, +h,d,)
e

s.t. <mass balance constraints for commodity i (1.2)>
<setup constraint for commodity i (2.2)>
<constraints (4)(5) for commodity >

This problem corresponds to a decision problem for the product manager of item 7, which could
be produced on a particular set of manufacturing facility /. Without loose of generality, we may
incorporate in the submodel a performance measure S(fj,cji,4;y) specific to item i according the
particular requirements for product i This performance measure can be due-date based,
measured against a shipment (e.g., truck) schedule, or justified according to other product
specific measures.

The single facility, single item uncapacitated lot-sizing problem has been studied
intensively in the literature. Despite of its binary variable it is well known that this problem can
be solved in polynomial time using Wagner-Within type algorithms. In recent years, more
efficient implementation of Wagner-Within algorithms has been developed by Federgruen and
Tzur (1991) and Wagelmans et al. (1992), which has order Oin log n} or better. The existence of
these polynomial time solvable subproblems allow the more general multi-period, multi-item
capacitated lot-sizing problems to be solvable in a reasonable amount of time for realistic size
problems (c.f. Tempelmeir and Derstroff, 1996). Since our primary concern here is the multiple
facility case we are interested to know if the single-item, multi-facility uncapacitated subproblem
can be solved in polynomial time. There are two important reasons for this: (1) the subproblem
has the form of a mixed integer program. Unless special structures exist, the solution to problem
(P} is unlikely to be efficient, and (2) there is no straightforward (efficient) decomposition from
the multi-facility case to single-facility. We now present a few important result for the multi-
facility subproblem.

Theorem 1. (Non-splitting property): There exists an optimal solution fo the single-item,
multiple facility problem (Py) such that item i's demand in period t is produced in exactly one of
the J; facility, i.e., exactly one of the b’y is positive for each period t.



Proof: Tt is easy to verify that problem (P) has Leontief structures. The setup cost K can be
incorporated into the production cost C'y as a fixed charge function as below:

oo ¢, x + K} z'fx;.I >0
# 0 ifx, =0
Other constraints are linear while the objective function is concave. Thus model (P) has
the following features: all nonnegative variables x, /, b, appear exactly once with a positive (+1)
coefficient; in all other occurrences they have a negative (-1) coefficient. It follows that if more
than one variable appears with a positive coefficient in the same constraints, then only one of
these variables can be positive in the optimal solution, which results in the following conditions:
Bub'y =0 fort=1.T, j=1.J;, k=1.J;
This condition states the nonsplitting property. [

Theorem 2. There exists an optimal solution to the single-item, multiple facility problem (P}

that has the following properties:

(i} No simultaneous production of item i over more than one facility can take place ina
given period. In other words, x 'y Xy=0, Vijkt.

(i) No production of item i will be scheduled at all if there is inventory carried over from a
previous period in one of the facilities. In other words, x 'y I'w=0, Vi j k.

Proof: Consider the following mass balance constraints implied from (1.2):
dy Dy =b, + 1 VieN,jelJ, teT

> b, =D, VieN,teT

jeJ
These constrains can be replaced by the following constraint:

J;

S (¢, + I, ~I)=D,  VieN¢teTl
j=l
With this new constraint problem (P, still has Leonteif structures which implies the following
conditions:
Apxiy =0 fort=1.T j=1.J;, k=1.J,
Xpllay =0  fort=1.T j=1..J;, k=1.J; 0
Note that the conditions stipulated in Theorem 2 is more restrictive than that of Theorem
1. It states that there exists an optimal solution where not only an item’s demand is satisfied by
exactly one facility in a given period (non-splitting), but no production will be scheduled for the
item in more than one facility during any given period. Furthermore, if there is inventory exist in
some facility from a previous period (that is available at a lower cost), there will be no



production scheduled for the current period at all. Theorems 1 and 2 lead to an important result
as follows.

Theorem 3. The uncapacitated. single-item, multiple-facility problem can be solved in
polynomial time using a shortest path algorithm.

Proof: We will state the proof using a familiar graphical representation as follows.

Feriods

The first row of nodes denotes facility 1 and the ith row denote facility Ji. There are 7+
time epochs:0,1,2,3, and a period is the interval between epochs, i.e., between epochs O and 1 is
period #=1, and between 1 and 2 is period =2, etc. A horizontal arc denotes the production that
satisfies all the periods' demand within the time epochs. The arc cost includes production,
inventory and setup costs. A vertical arc denotes a switch from one facility to another and the
cost associated to these arcs are 0. There is an artificial source and sink, arcs adjacent to these
nodes have O cost. In a general graph for each time epoch there are arcs for all the facility
periods. So production of an item may switch from one facility to any other in different periods.
From Theorem 2, there will be production scheduled for item i only if there is no inventory
carried over from a previous period in one of the facilities. In other words, in an optimal solution
exactly one arc will be chosen to enter a given node in the network. On the other hand, Theorem
2 states that there can be no simultaneous production of items 7 in more than one facility in any
~ given period. In other words, in an optimal solution exactly one arc will be chosen to leave a
node in the network. This means that an optimal production schedule corresponds to a source-to-
sink path in the network, and it corresponds to a shortest cost path. U

The special structure of problem (P;) suggest an optimization algorithm for problem (P)
which relax the capacity constraints and solves repeatedly the uncapacitated problem (7)) for
increasingly better bounds. In the following, we describe a solution methodology making use of
the special structure.

10



3. Solution Methodology

We propose a Lagrangean Decomposition scheme for the solution of problem (P).
Lagrangean Decomposition was first proposed by Guignard and Kim (1987). The scheme has
been applied to a variety of NP-hard problems including multi-item single-facility lot-sizing
problerns (Thizy, 1991). A main advantage of Lagrangean Decomposition over the better known
Lagreangean Relaxation is that the theoretical Lower Bound obtained from Lagrangean
Decomposition at least as tight as that from Lagrangean Relaxation. We start our exposition by
first listing the mass balance constraints (1.2) explicitly

T Ji .
> Di=> 1] Vie N (12.1)
] J=1

T
fl= Z X, YieN,jeJ, (1.2.2)
X, +I;£ y=by + 1T, YieN,(j,H)e A (1.2.3)
JI
> by =D YieN,teT (1.2.4)

7=
If we assume that the system must return to its initial inventory at the end of the planning
horizon, ie., Iy = Iy, we may simplify the above mass balance constraints. From (1.2.3) and
(1.2. 4) we have,

. r . T J‘ N
Di= Z(x +1 =T, Vi thus D Dp =" % (x, + 1, —1,) (1.2.5)
=1 t=l =t
butsmcef =1,

Tl i
ZIJ: =1 "*“Z[i-, => I+ Z '+ » 50 we can rewrite (1.2.5) as
=]
T

Z D)= sz,f VieN (1.2.6)

J=1 t=1
Note that (1.2.6) implies constraints (1.2.1) and (1.2.2). This allows us to consider problem (P)
with only two sets of balance constraints (1.2.3) and (1.2.4) since (1.2.1) and (1.2.2) will be
satisfied automatically.

The basic idea of our decomposition is to separate the multicommodity flow problem (P) into
two subproblems: one with the capacity and the mass balance constraints, but not the setup
constraints, the other is a commodity-decomposable subproblem with the mass balance and the
setup constratins. The second subproblem is separable to single-commodity problems (P,
which has special structure as stated in Theorems 1 to 3. In this decomposition, the first
subproblem is a linear program and the second is a collection of shortest path problems, all are
relatively easy to solve. To demonstrate this solution methodology we use a slightly simplified

11



formulation of problem (P) by dropping the first term in the objective, and assuming that setup
does not consume capacity (dropping (2.1). We then restate the multi-facility production

problem (P') as follows:

Minimize z=, > > (€%, + Kig, +,05)
pml i=1 j=1

S
2. Bx su, V(j,t)ed (L.1)
i=l
X+l =b,+T, YieN,(j,HHed (1.23)
J, A
S b, =D VieN,teT (1.2.4)
F=l
Xl = XX, VieN,jelJ,tel (6.1)
b, = bb, VieN,jeJ,teT (6.2)
I, =1, vieN,jed,teT (6.3)
'y, + I, =bbj, + 1T, VieN,jed,teT  (1.2.3)
S bb), = D] VieN,tel (12.4)
jaJ
X, < Mg, VieN,jedJtel  (22)
X, by 20 VieN,jeJ,teT  (4.1)
xx, I, bb,, 8,20 YieN,jeJ,teT (42)
5,e(0D VieN,jedJ,teT (5

In the above formulation, we make copies of the variable x', b’ and Iy as xxy, bb'y, and IT},
We then use the copies to split the original constraints into two sets of constraints:
{(1.1),(1.2.3),(1.2.4),(4.1)} and {(1.2.3)(1.2.4),(2.2),(4.2),(5)} plus the linking constrains (6.1)-
(6.3). We then separate (P) by relaxing these linking constraints and placing them in the
objective function with Lagrangean multipliers A, My, and lb,-ﬂ. This yields the following
subproblems:

Resource Subproblem:

T n J;
. _ ~ i gl NT L 2P A
Minimize — z = Y, El((ciﬂ + A X (B + A ), + A0b)
tal i=1 j=

s2.(1.1),(1.2.3),(1.2.4),(4.1)

12



n Product Subproblems:

T J

Minimize — z, = ¥ (> 0 (~Apxx, — AL I, ~ Abbl, +Kiq)) = Z 25 (A)

=l =1 j=l

s2.(1.2.3),(1.2.4),(2.2),(4.2),(5)

Note that under the general framework of Lagrangean Decomposition, constraints (1.2.3) and
(1.2.4) do not need to be duplicated for both subproblems, i.e., these constraints can be assigned
to either subproblems. However, constraint duplication does improve the speed of convergence
since the solutions proposed by the subproblems tend to be more similar. Our computational
experience indicates that as long as the added constraints do not add computational burden to the
subproblems, duplication improves solution performance. A lower bound to problem (P) given
Largrangean multiplier set A is as follows:
LB, (P") =v(z,(A)) + ZV(ZQ )

Where v(.) denote the optimal value of the problem. Note that the resource subproblem is
a linear program, and the product subproblem 7, has identical structure as problem (P;) described
earlier, which can be solved efficiently using a shortest path algorithm. Given the solutions of z,
and z, one could find an upper bound using the following feasibility restoration routine: given
the solution for the resource subproblem we add setups for the periods where production is
nonzero, i.e., we set ¢y to 1 whenever x’ﬁ>0_ Then we calculate the objective function using
original cost function. This results in an upper bound for the original problem. The lower bound
can be maximized by searching for the set of Largrangean multipliers A that maximize the
Lagrangean dual. Both dual ascent and subgradient search methods can be used for this task. In
this paper, we use the later approach, which is summarized in Section 3.2. As we will
demonstrate in the computational section, we can achieve solutions with very small duality gaps
using the bounds and the search algorithm.

. 3.1. Managerial Insights Related to the Decomposition

Our choice of Lagrangean Decomposition is not purely motivated by computing. The
decomposition of the multi-facility production model into a resource subproblem and multiple
product subproblems has interesting managerial implications. As recognized by several

researchers (c.f, Jornsten and Leisten, 1994; Burton and Obel, 1984), mathematical

decomposition often leads to insights for general modeling strategies or even new decision
structures. The decomposition suggested earlier allows further analysis concerning modeling

13



flexibility in the context of multi-facility manufacturing planning. Suppose we consider each
product subproblem as a decision problem for a product manager and the resource subproblem as
a decision problem for a production manager overseeing multiple facilities. Thus, the
decomposition can be viewed as a decision system where produci managers, each responsible for
a product, compete for resource capacity available from manufacturing facilities. The production
manager, on the other hand, represents the interests of efficiently allocating resources from
multi-facilities to the products. Clearly the solutions proposed by the production manager (x, /,
b) do ot agree with the collective solution proposed by the product managers (xx, II, 55). A
search based on Lagrangean multipliers essentially penalizes their differences, while adjusting
the penalty vector iteratively. This process stops when the degree of disagreement (the duality
gap) is acceptably low, or when further improvement is unlikely.

The above viewpoint is useful in evaluating the flexibility model (P} represents. First, it
should be clear that each product subproblem (P) could be customized to represent the
distinctive needs of each product. So long as its basic network structure is maintained there will
be no additional computational burden. Similarly, as long as the resource subproblem remains a
linear program, it can be customized with various facility submodels each reflecting the distinct
production structure of a facility. However, a different constraint duplication strategy may be
necessary when changes are made to the base model.

3.2. The Subgradient Search Algorithm

In this section, we summary the subgradient search algorithm used to adjust the
Lagrangean multipliers. At each ieration s, we calculate Lagrangean multipliers using the
following equations:

x5+l qxs 5 I . i,s
AT = A +ut (X - xxy

At = 2 v U -1 ()
Rt = 20 ot (bl - bbYy

it it

where

5

U =

y (UB, — (W2, () + 3 WL (A)
AN (8)
SIS (G —dy U - Y G b))

=1 i=l jal

%! a scalar set to 1 and reduced by half if the lower bound fails to improve after a
fixed number of iterations
UB’,: the best upper bound obtained up to iteration s
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We terminate the algorithm after a prespecified number of iterations. The best upper bound
obtained at the end of the iterations is the heuristic solution to the problem. We summary the
algorithmic steps are as follows:

Step 1: Initialize 5,4,#, y and UB".

Step 2: Solve the resource and the product subproblems. Compute the lower bound
(v(z, (A )+ D v(z3 (A7) for current iteration, s.

)

Step 3. Compute an upper bound UB; from the optimal solution of the current resource

subproblem Min z;(4). If UB, <UB,_,, set UB, « UB, .

Step 4: Update the multipliers using equations (7) and (8)
Step 5: Stop if a prespecified iteration limit is reached. Otherwise go to Step 2.

4. Computational Testing

We coded the subgradient search algorithm using the mathematical programming language
AMPL along with the CPLEX linear solver. The experiments are conducted on a Pentium-200
personal computer with 64Meg RAM. We first generate a set of 10 benchmark test problems
with 100 products, 5 facilities and 5 periods. We then alter the problem characteristics and sizes
to generate eight additional test sets each with 10 instances. For the benchmark problems the
production, inventory and setup costs are randomly generated using Uniform distribution.
Demands are also randomly generated using Uniform distribution. To generate capacity we use
the following procedure: we first calculate cumulative demands by adding the randomly
generated demands of all items up to period ¢ for all te7. For the first period, we multiply the
total demand for the period by some constant (= 1), We then use this number as the total capacity
available in the period and assign a fraction to each facility. For the coming periods, total
capacities assigned for the previous time periods are subtracted from the cumulative demand of
that period and then multiplied by some constant to generate the capacity. Using this procedure,
we may generate relatively challenging (but feasible) test problems with tight capacity
" constraints. For the benchmark test problems theses constants are 1.6, 1.4, 1.3, 1.2, and 1.1 for
periods 1 to 5, respectively.

For simplicity, we assume S (the consumption rate of facility j's resoure by item / at
period £) is equal to 1. We also assume the starting and ending inventory to be zero. In Table 1,
we summarize the parameters used in the benchmark and each of the eight test sets (90 test
problems total).
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For most of the test problems lower bound increases significantly in the first 20 iterations
whereas the upper bound improves slowly. There appears to be a strong correlation between the
quality of the lower and the upper bounds, i.e., when the lower bound obtained is tight, the upper
bound restored from the lower bound solution is also closer to optimum. We observed a quite
consistent convergence pattern throughout all test problems. Figure 3 shows a representative
convergence plot for the algorithm. As shown in the plot, convergence typically occurs quite
early resulting in a very small duality gap.

For each test problem, we calculated the duality gap at the end of the iterations using the
best upper and lower bound obtained during the search. The computational results in terms of
the gap are summarized in Table 2. We summarize the observations as follows:

27500 : . T : i ,
0 20 40 60 80 100 120

Figure 3. Representative Convergence Plot for the Subgradient Search Algorithm on a
Benchmark Problem

1. As shown in the table, setup cost appears to have a significant effect on the duality
gap. High setup instances has an average gap of 3.766% compared to 0.304% for the
low setup instances. This result is not surprising since an increased setup costs widen
the gap between the resource subproblem (which is an LP ignoring the setup cost) and
the product subproblems. On the other hand, since the original problem is a mixed
integer program with binary setup variables, as the setup costs increase the problem
behave closer to a combinatorial problem then an LP.

2. The number of facilities seems to have an effect on the duality gap as well. The ten
facility instances have a consistently higher gap (averaged 2.334%) when compared
to the five facility benchmark (1.099%) and the one facility case (0.169%). This
result is useful in that making multiple facility decisions is an unique feature of our

16



model. The results suggest that the added dimension has a noticeable effect on the
difficulty of the problem. On the other hand, it also shows that the proposed
algorithm is quite effective in solving the traditional single-facility problems.

3. The effect of capacity levels is much less pronounced. This may be due to the fact
that the capacity generation procedure relatively tight capacity in all instances. Since

" the difference between non-capacitated and capacitated lot sizing models is well
known, we did not make an attempt to further loosen the capacity.

4. Tncreasing the number of items does not seem to have the same effect as increasing
the number of facilities. We tested four 300-item problems using exactly the same
setting as the benchmark test set. The duality gaps are roughly the same as those in
the benchmark problems, with an average of 0.967%. However, when we increase
the number of items to 500, memory management becomes an issue.
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Table 1. Parameter Settings of the Test Set

Test Set # 1 2 3 4 5
Tight Loose High Holding | Low Holding
Benchmark Capacity Capacity Costs Cost
Number of 100 100 100 100 100
ifems
Number of
facilities > 3 > > .
Numper of 5 5 5 5 5
periods
Production Uniform Uniform Uniform Uniform Uniform
cost ~[5,14] ~[5,141 ~[5,14] ~[5,14] ~[5,14]
Inventory Uniform Uniform Uniform Uniform Uniform ~{1,5]
holding cost ~5,14] ~[5,14] ~[5,14] ~{20,29] ’
Setup cost Untform Uniform Uniform Uniform Uniform
~[5,14] ~[5,14] ~[5,14] ~[5,14] ~[5,14]
Demand Uniform Uniform Uniform Uniform Uniform
~[1,10] ~[5,14] ~[1,10] ~[1,10] ~[1,10]
Capacity 16,14, 13, | 13,1211, | 1.8,1.6, 1.5, 1.6,1.4, 13, 1.6,1.4,13,
constants 12,1.1 1.1, 1.05 14,13 1.2, 1.1 1.2, 1.1
Number of
test 10 10 10 10 10
problems
Number of 106 106 106 106 106
iferations
Naming BCH TC LC HH LH
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Table 1b.

Test Set # 6 7 8 9
High Setup | Low Setup - -
Costs Costs 10 Facilities 1 Facility
Number of 100 100 100 100
items
Number of
facilities > 3 10 !
Numi.aer of 5 5 5 5
periods
Production Uniform Uniform Uniform Uniform
cost ~[5,14] ~[5,141 ~[5,14] ~[5,14]
Inventory Uniform Uniform Uniform Uniform
holding cost ~{5,14] ~[5,14] ~[20,29] ~[1,5]
Setup cost Uniform Uniform Uniform Uniform
~[20,29] ~[1,5] ~[5,14] ~[5,14]
Demand Uniform Uniform Uniform Uniform
~[1,10] ~[1,10] ~[1,10] ~[1,10]
Capacity 16,14,13,116,14,13, 116,14 13, 116,14 13,
constants 1.2,1.1 12,11 12,11 1.2, 1.1
Number of
test 10 10 10 10
problems
Number of 106 106 108 110
iterations
Naming HS LS 10F IF
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Table 2. Duality gap® (in %) by test problems

BCH | TC I.C | HH | LH | HS LS 10F 1F
1 1.18 {101 {119 100 |1.59 |49 (036 |2.38 [0.04
2 099 |[1.01 |142 |087 {129 |[272 (028 310 |005
3 1.05 | 132 |1.00 |125 |134 (201 |026 231 |0.10
4 1.32 | 133 1176 (096 (102 (482 (026 245 1006
5 124 |129 [093 |[085 1097 |510 [033 |208 |0.10
6 1.10 {128 (086 [1.00 (100 321 027 |194 |1.10
7 1.02 | 116 [1.09 1073 |08 |[551 1026 198 10.11
8 1,16 11.59 {104 (080 |1.03 (356 |[032 1231 [0.04
9 084 1105 |1.19 |074 |1.03 {272 036 |266 |004
10 (109 [150 [ 1.18 [082 (111 {3.05 [034 |193 |0.05

Avg. | 1,099 | 1.254 | 1.166 | 0.902 | 1.124 | 3.766 | 0.304 | 2.334 | 0.169
UB" -LB

® Duality Gap = (———=)-100%
uality Gap = ( B ) o
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