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We propose a new routing algorithm for telecommunication networks which integrates static
centralized routing and dynamic decentralized routing using the notion of virtual clustering.
First proposed by Bartolacci and Wu [1], virtual clustering reconfigures the network
topology periodicaily based on projected traffic requirements in the network. We propose
a method which views virtual clustering as added path constraints in the network. We
develop a flow deviation algorithm which solves this path-constrained routing problem. This
results in an inter-cluster routing which balances and regulates global network traffic.
Within each cluster, decentralized dynamic routing algorithm is applied which handles
dynamic traffic fluctuations in real-time, The proposed routing scheme is designed for
nonstationary traffic patterns which are often observed in real-life telecommunication
networks. Intensive testing of the proposed routing scheme was conducted on randomly
generated problem instances. We show that the routing scheme consistently outperform
the traditional dynamic routing algorithm. Under nonstationary traffic conditions, the

proposed method significantly outperform both the static and the dynamic algorithms.



Most existing network routing algorithms are dynamic and distributed by nature where routing
decisions are made locally and often myopically. Static route optimization algorithms are typically
used in the design stage, which assume steady state traffic behavior while ignoring short term traffic
fluctuations. Consequently, most static algorithms assume constant traffic arrival rates which
prohibit their use for short-term routing problems where traffic rates may change significantly over
the course of a day. In this paper we propose a routing scheme which attempts to integrate both
static and dynamic routing principles. This routing scheme is based on the notion of virmual clustering
proposed by Bartolacci and Wu [11. The virual clustering method logically reconfigures the
network in a periodic basis according to its traffic patterns. The logical topology imposes restrictions
on the potential paths between certain groups of source-destination node pairs in the network, thus
regulates and balances the global network traffic while maintaining sufficient local flexibility for real
time routing, Virtual clustering transforms the network routing problem into an inter-cluster routing
problem across the clusters and several intra-cluster routing problems. In this paper we propose a
new approach to the inter-cluster routing problem where static optimal path routing is applied.

Our appr-oach generalizes the concept of virtual clustering in that we view clustering as 2
means of reducing the variance of network traffic used by the routing algorithm. This can be easily
explained by the fact that the traffic consolidated from a specific cluster {of nodes) to another cluster
tends to exhibit a much smaller variance compared to the node to node traffic. Since the local traffic
fluctuations can be handled sufficiently within each cluster using an existing dynamic routing method,
we concentrate on optimizing the "global," or inter-cluster traffic. This reformulation of the routing
problem allows the use of analytic routing results on short-term imer-cluster routing problems. Since
analytic models typically assumes a steady-state traffic behavior based on mean-values [4],[5],[6].

Efficient clustering is important for virtual clustering to work well. It has to be done g priori
on a period basis before any routing decisions are made. In the paper, we first propose a mathematical
mbde} which establishes an analytic framework for the routing scheme, we then describe the routing
algorithm developed under the scheme, and finally demonstrate the performance of this method and
its ability to handle short-term traffic fluctuations.

Relationship to Past Work in Network Routing

The optimal routing problem is a special case of the multicommodity flow problem. Bertsekas



1. PROBLEM STATEMENT

A telecommunication network can be represented as a directed graph consisting of links and
nodes. Each node generates data, receives data, and transmits data to the other nodes whereas links
are bidirectional transmission media between nodes. Before transmitting to the other nodes, at the
source node, data is separated into smaller packets and each packet is delivered to the destination
node by visiting intermediate nodes on its way. The routing problem is to determine the sequence of
nodes (or links) that each packet visits. During a visit to an intermediate node if a packet finds that
there are other packets at the buffer of an outgoing link , it joins the queue and waits until its turn
comes for transmission on that link. Most mathematical models assume infinite buffer capacity for the
nodes although there is a buffer size limit for each link.

Consider a directed graph D(N,4), where N is the set of nodes and A is the set of all links,
assumes bidirectional links (i.e. for every link (%,f) € 4, there is a link (j,i) € 4). For D(N,4) there are
R pairs of source-destination pairs. (If there is a communication between each source-destination pair
then there are R=n(n-1) source-destination pairs where n is the number of the nodes) The source
destination pairs are represented by (5, d), where r=1,2,.....R. If we consider the traffic carried for
each source destination pair as a commodity, the routing optimization problem is a multicommodity

flow problem with the following nonlinear objective function:

Minimize (Z} dyy%5)
1.3

where d;;{x = et 1K

ii ij

and, 1, propagation delay of a link (7,7)
x, : sum of all flows over link (i) in packets/sec
¢, : total capacity of a link (ij) in packets/sec
The delay function formula dj; () 18 based on the assumption that each queue behaves as an

M/M/1 queue of packets- a consequence of the Kleinrock independence approximation and Jackson's
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and Gallager [2] describe the formulation where the objective is to minimize packet delay subject to
flow constraints in the network. Analytic model typically adopt the assumptions that (1) Kleinrock's
independence assumption [3] is satisfied, (2) traffic arrival process to the nodes of the network is
homogenous Poisson, and (3) packet lengths are exponentially distributed. Optimal solution to the
problem generates paths and traffic flows assigned to the paths, sometimes bifurcated, between
source-destination pairs. There has been an extensive literature on various algorithms to solve the
optimal routing problem both optimally and heuristically. Among the exact algorithms, Fratta, Garla
and Kleinrock [4] applied the Frank-Wolfe decomposition, Bertsekas and Gallager [5] used the
gradient projection method, Cantor and Gerla proposed extremal flow technique [6]. Mahey,
Ouorou, LeBlanc, Chifflet [7] developed an algorithm which has less bifurcation. In this paper, we
implemented the algorithm of Bertsekas and Gallager.[5] as a static routing benchmark and compare
the solution with our approach. |

Dynamic routing algorithms, which update routing tables according to the changing traffic
information tries to minimize average delay throughout the network. The dynamic shortest path
routing algorithm [8] proposed, implemented and improved for ARPANET has been practically in
use for years. In this research we coded the ARPANET dynamic routing algorithm for the purpose
of Intra-cluster routing.

The concept of organizing the network as a hierarchy of clusters has been considered by quite
a few authors. They approach are typically used in the context hierarchical routing which uses
clustering as a means of dealing with routing complexity. Kleinrock and Kamoun [9] showed that as
the number of nodes increases the clustering of network nodes become crucial to routing
performance. Anthony, Huang and Tsai [10] developed a routing algorithm for Balanced
Hierarchically Clustered (BHC) networks. In their algorithm, routing within clusters is performed in
a distributed fashion on a cluster by cluster basis similar to our approach. Muralidhar and
Sﬁndareshan [11] and Boorstyn and Livne [12] both proposed two- level hierarchical routing models
that seek to integrate the routing of the clustered network nodes. Bartolacci and Wu [1] propose the
virtual clustering method which uses logical clustering as a means of regulating network traffic, This

paper will be a direct extension and generalization of this approach.



Theorem. While this assumption is typically violated in practice, the expression for di(.) represents
a usefisl measure of performance. In our model, we drop the propagation delay term 77, since it 1s
» function of network design rather than routing efficiency and do not significantly effect the results.

The above models assume a_stationary, homogenous Poisson traffic arrival process. A traffic
requirement matrix, F, defines the required traffic flows for each pair of source-destination node in
packets/sec(or bits/sec). However, in practice the traffic requirement matrix change over time, and

the network topology, D(N,A) may also change due to node or link failures.

1.1 A SUMMARY OF THE VIRTUAL CLUSTERING SCHEME

The virtual clustering scheme [1] cluster the network at the beginning of a planning period
T. This clustering process can be 'repeated during the planning period if major changes occur which
renders a different clustering more attractive. Given the clustering structure, we categorize the links
that connect the nodes within the cluster as intra~cluster links and the links which connect the end
nodes of different clusters as inter-cluster links. The nodes attached to the inter-cluster links are gate
nodes (see Figures 1 and 2). Routing within each cluster is performed by intra-cluster routing. For
traffic section of any particular source-destination pair, inter-cluster routing decides all the entry and
exit gate nodes for each of the clusters (see Figure 3).

The virtual clustering model seeks to regulate the overall for the interest of the given objective
function(e.g. total delay). Among the large number of clusters, the model is set out to find the one
which gives the best result for the planning period, T. This Virtual Clustering Problem can be
formulated as follows with the corresponding notation:

X - set of all virtual clusters

I number of clusters

N, set of nodes in cluster ¢

x,, | Cluster membership variable of a node i, (0,1) variable

o, : size of cluster ¢

I, - indicator variable that equals 1 if link (7,j) connects two clusters in a clustering solution
Y {12, Gy, L} a0 specifying a particular virtual clusters solution

k, and k,: edge-connectivity requirement for intra- and inter- cluster network, respectively
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J: the set of intercluster links

7 number of nodes in the original network D(N,A4)

Minimize. ,z1 (X, 9)
where g solves the intercluster routing subproblem(l.6) -{1.10}

r
Yox,. =1, YieN (1.1
i=1
n
X, %0, , Ve (.2)
i=1
XioXyorky o Vee¥ A (1, 7)€A (1.3)
ieN
¥ 1k, Vee¥ A (1, J)€Jd (1.4)
ieN,
where set J=A - {(u, v} 1Y, %, X, = 1, u#v}
cE¥
(1.5)

%, €{0,1}

Constraint set (1.1) are cluster membership constraints which ensures each
node to be a member of only one cluster. Constraint set (1.2) limits the size of each cluster.
Constraints (1.3) and (1.4) are connectivity constraints within (k,) and among the clusters ( k; ).
Intra-cluster connectivity constraints are useful to isolate localized traffic whereas intercluster

connectivity constraints provide a degree of reliability.

The solution of the virtual clustering problem based on ¢, k,, k, forms a framework for inter-
cluster and intra~cluster routing. In their study Bertolacci and Wu [1] proposed a particular network

structure as follows:

An inter-cluster network, generated from a particular virtual clustering, is a network
constructed by connecting all nodes within the same cluster to a "virtual node", thus forms
a star structure. These "star networks" are then connected together using existing links in the
original network topology. For a specific source-node destination pair, the inter-cluster
routing specifies the following: (1) Via which gate node the originated traffic will use to leave
the current cluster, (2) the entering and leaving gate nodes this traffic will use for a " passing
through" cluster. and (3) the entering gate node this traffic will use for the "destination
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cluster." The actual routing within each cluster will be later handled by a dynamic routing

algorithm. Solution to inter-cluster routing forms a basis for intra-cluster routing as it sets up

the traffic requirement for source-destination pairs within the cluster.
1.2 PROPOSED SIMPLIFICATIONS OF THE VIRTUAL CLUSTERING SCHEME

In this paper we propose a streamlined approach to virtual clustering where we solve the
inter-cluster routing problem as a restricted static routing problem. More specifically, we add path
constrains to the optimal routing problem based on the results of virtual clustering such that after
visiting a specific cluster a packet is prohibited from visiting the same cluster again. This in effect
reduces localized congestions and balance the overall network traffic. We later demonstrate that this
routing scheme outperforms the conventional static and dynamic schemes. In the following, we first
reformulate the combined inter-cluster and intra~cluster routing problem using the path formulation
of multicommodity flow.

P : set of all paths connecting all source-destination pairs.

P. : set of all directed paths connecting the source-destination pair (5',&)

x, : flow of path p€P in packets/sec

P, setofall paths containing (4,

Z {x,9) = Minimize,, Z dij(gij)
(1,7) (1.6)
s.t. Z X, 7 Jyy (1.7
P, 1
x_ = £ for all re R
g%—;l i (1.8)
Z X% C,. for all (i,37) € &
1<) 13
Pepici,j; (19)
xsz for all pe F
(1.10)

Note that P’ is the set of paths that pass through link (7,7, and which satisties the stated
virtual clustering condition: for each path p& P, the entry into each cluster can be no more than

orce, i.e., on the way to its destination, a packet can not visit the same cluster again once leaving the



cluster. Whenever a new virtual clustering is generated, the set of paths P, changes accordingly.
The key is to cluster the network in such a way that the traffic is better balanced via the use of the

cluster-constrained paths.

2. SOLUTION METHODOLOGY

' In this section we describe the methodology we use to solve the formulated routing problem.
We first propose a clustered routing algorithm (CRA), then, for the purpose of performance
comparison we describe 2 static optimal routing algorithm (SRA), and a dynamic shortest path

routing algorithm (DRA). All these algorithms are implemented and will be explained in detail.

2.1 CRA (Clustered Routing Algorithm)
We first summarize the main steps of the clustered routing algorithm (CRA) in the following:
Phase 1: Clustering and Optimal Path Generation

For a given communication network D(N,A),

7. 1. Find the shortest hop distances between each source-destination pair

7.2. Form the distance matrix M using the shortest hop distances

1.3. Using a hierarchical clustering algorithm, form clusters in the network based on the
distance matrix M and a prescribed number of clusters r

1.4. Check the connectivity &, and &, of the clusters generated, repeat Step 3 if necessary

1.5. Based on the cluster structure, obtain cluster-constrained optimal paths using a static
optimal routing algorithm (SRA)
Phase 2: Dynamic Routing

2.1. When a packet is generated at a specific source node s for destination d use the generated
optimal path from Phase I to identify the entry, and the exit gate nodes for each clusters it is going
to visit.

2.2 Route the packet from its source to the exit gate node of the current cluster using a
dynamic routing algorithm (DRA)

2.3 When the packet arrives at the exit gate node, use the intercluster link identified in the

cluster-constrained optimal path to send the packet to next cluster's entry gate node, this node



become the new source node

2.4 Repeat Steps 2.2-2.3 until the packet reaches the entry node of its destination cluster.

2.5 In the destination cluster, route the packet from the entry node to its destination node
using DRA
Tn the following, we describe major components of CRA. in detail.
The Clustering Algorithm

CRA bases its routing on the virtually clustered network in any planning period T. In essence,
clustering put physically nearby nodes that have the most traffic going between them together so as
to localize high intensity traffic within the cluster, and stabilize inter-cluster traffic. On the other
hand, to ensure feasible connectivity within and across clusters, nodes close to each other in terms
of hop distances should be members of the same cluster. Bxisting clustering algorithms, such as the
ones available from the TMSL library, use a symmetric distance matrix as input. Based on the
distances given between each pair of set elements, the algorithm partitions the set into mutually
exclusive and exhaustive clusters. Our approach is to form a logical distance matrix M which makes
use of the information in network topology D(IV,4) and the traffic requirement matrix F. Specifically,
for each pair (5,d) in M we compute 2 logical distance as the convex combination of the normalized
physical shortest hop distances and the optimal link flows generated from /¥ using an static optimal
routing algorithm (SRA). Note that the use of optimal link flows for all network links d1stmguzshes
our logical distance calculation from that of Bartolacci and Wu [1] where they use only the traffic
requirement between source-destination pairs, i.e., no effort is made in estimating the impact of
current traffic requirements given the network topology. Consider the situation where a few nodes
in the network generate most of the traffic, or networks that are sparse. It is would be critical to
know both the traffic requirements, and how the traffic propagates though the network. To further
explain the logical distance, we first adopt the following notation:

Ly = My Iogmal distance between node i and node j

Jip+ output from a SRA solution given traffic requirement matrix £, amount of flow on path
p that passes through node / then node divided by the number of links between / and j on that path

/; - summation of all f, over p, or more specifically
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pE{PINP 4)

h; =h, : shortest hop distance between node i and node ]

h,  normalized A

t; = t,=f;+ fi ( fyfy may be different)

¢, normalized 7,

t_..: max of t values among all links

hjy = (a1 (2.1)
Yoo(d,,~1)
i,meN
S L Sl oL | 2.2)
i3 Y (tpax ~ L)
£, geN
’ ' (2.3)
m;; = K Fyy + (1-p) hyj pe[0,1]

The definition of logical distance m, ensures that the greater the total path flows passing through node
i and j, and the smaller the shortest hop distance between nodes i and j, the smaller is my 4 is a
parameter which adjusts the weights between hop distances and adjusted total optimal flow term. It
needs to be chosen at a level which ensures connectivity requirements among and within the cluster
are satisfied. In our implementation we set the inter and intra-cluster commectivity (k, and k,) toone.
We compute the logical distance matrix, then use the complete linkage hierarchical clustering from
IMSL to perform the clustering. Adfter each clustering, we check if all the clusters are connected. In
case any of the clusters aren't connected , the algorithm backtrack and seek for a different clustering
solution.
Tnter Cluster Routing using an SRA

After virtual clusters are formed, we develop a static optimal routing algorithm (SRA) to solve
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for the path-constrained routing problem defined by (1 6)-(1.10). The purpose here is to obtain delay
minimizing paths which satisfy the new path constraint imposed by virtual clustering. The algorithm
we developed is modified from Bertsekas-Gallager’s [2] minimal-delay flow deviation algorithm (BG
Algorithm). We propose 2 modified BG algorithm which generates cluster constrained paths when
optimize routing, This Cluster-Constrained Shortest Path (CCSP) Algorithm finds cluster-constrained

paths from a specific node, s to all destinations nodes.

BG algorithm is optimal under Kleinrock's independence assumption, Poisson packet arrivals,
and exponential packet length. Nonetheless, it has been shown that violation of these assumptions to
some degree do not significantly affect accuracy of the performance measure. Similar to many other
optimality seeking algorithms [41,[51,[61.{7] BG algorithm is designed based on the notion of flow-
deviation. Input to the algorithm includes a traffic requirement matrix £ network topology D(N,4)
in the form of an 7xn adjacency matrix, and an 7%n capacity matrix, C (nis the number of nodes). The
output of the algorithms is a path set P’ =P, P, P °F } for each source-destination pair (¥,
&) and path flows associated with each path.

Flow deviation algorithms start with calculating feasible path flows and then move traffic from
congested paths to less congested ones while maintaining feasibility. The idea behind BG algorithm
‘s to move a small amount of flow (at a time) from 2 path with larger incremental delay to a path with
sraller incremental delay then the average. The incremental delay is the sum of all incremental delays
of the links that form the path. If the delay fanction of a link (i) is given by dj(x,) (X total flow on
link (i,7)) the incremental delay on the link is:

oy (%)~ (X5m€)

T,5 = Lim g - (2.4)

dy(xu) is total delay on the link observed by packets. If d fx,) is a convex function then 7, is well-

I.is the change in

defined and it is in fact the derivative of the delay with respect to the flow. Thus, /;

the contribution of link (4,7} to the total delay. In order to move the flow from links that have larger
I/ to the ones that has smaller 7,5 then total delay, BG Algorithm seeks to find a path where the total

incremental delay of links that constitutes that path is less than the total incremental delays of current
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paths. This can be accomplished by finding a shortest path where J,'s are used as arc distances. Then,
a small amount of flow is moved from nonshortest paths to the shortest path identified. The idea is that
if flow is moved from a path with larger incremental delay to a path with smaller incremental delay
then the total (hence the average) delay can be decreased. In our implementation of the BG
algorithm, we assume all the queues in the network are M/M/1, thus we define I, as follows as

suggested by Kershenbaum [13]:

Iij = 2J (25)

¢, x,is in terms of packets/sec. Given the distance matrix defined by 1,/s, we then find the shortest

paths from a specific source node to all destination nodes. For each (5',d") pair, we move a certain

amount of flow & from nonshortest paths to the shortest path.d is given by the following expression:

5 2Lyl 2.6)
H

=

where p is a nonshortest path, p* is the shortest path, L; is the length of the path p, L, is the length
of the shortest path. « is a stepsize function, and H, is the second derivative of the path length given
as follows:

2c..

H, = 2 =
P (i,j).eg (cij - xij)s (2.7)

where E is the set of links that are in p and p° but not in both. It is recommended by
Kershenbaum|[13] that 1/N< a<L/N? . L is the number of directed links. N is the number of nodes in
the network. It is also recommended that o is set to a higher value for the first iterations of the
algorithm, and it is to be decreased as the algorithm proceeds. In some cases, & shortest path can't
increase its flow by & due to its link capacity, and a nonshortest path can not decrease its flow by 5

since its path flow is less than & . In these cases, d is adjusted heuristically.
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Afier path flows are adjusted, the distances of the all links (7,/'s ) are recalculated. Based on
these new link distances, shortest paths from another source to destination nodes are generated and
the above process is repeated. For each source node the above computation is done sequentiaily. Until
all the source nodes are completed, the algorithm then starts over with the first source node. The
iterations continue, moving flows from nonshortest paths to shortest paths, until no more "significant”
progress can be made. In our implementation, progress is measured based on the value of total delay
(hence average delay). Ifthe improvement on the delay between two subsequent iteration is less than
a prespecified value, A, we terminate the algorithm,

BG algorithm generates an analytic solution for the routing problem. However the minimum
average delay found by the algorithm is a theoretic approximation, not the actual delay of the
network. To get the exact delay ﬁguré, we need to simulate the routing algorithm using traffic data.
In Section 4 we describe a simulation implementation of the routing algorithm. In this paper, we use
the static routing algorithm, or SRA, described above as the inter-cluster routing algorithm for CRA,
and we use the algorithm as a benchmark for comparison. To use SRA for inter-cluster routing, we
need to modify the shortest path algorithm to recognize the virtual clustering identified by the
clustering algorithm. We now describe this specialized shortest path algorithm.

For a given network D(N4), I; is the length of a link (7,7). d(i) vector shows the distance of

2y

a node from a source node. clfiJfjj is a matrix which denotes the forbidden clusters for node 1.
clfi]{j] =1 means that successor node of node i can be from cluster j. If it equals to 0, successor node
of node i on the path, can not belong to cluster j . clus(i) denotes the cluster number of node i. A()
denotes the set of outgoing links from node 7. pred(i) is predecessor node of node . CL is the set of
clusters of network D(N,4) represented by numbers. We sum.rnén‘ize CCSP as follows:

algorithm CCSP;
begin
S:=p; 8 =N
d(i) 1= = for each node i € N
d(s) := 0 and pred(s) := 0
ct[iffif=1forallie N, and for ail j e CL
while |S| < N do
begin
let i € S~ be a node for which d(i} = min {d(). jeS™}
cl[if[clus(i)] ;=0 // it makes the cluster forbidden for i
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S =8 u i

S~ =8 -{i}
for each (i,j} € A(i) do
begin
if {d(j) » d(i) + Iy and clus(i) = clus(j)} do
begin
d@) ;= d(i) + Iy 3
pred(j) := i

cIfK]=cifil[K] for all k € CL
/1 forbidden for i is forbidden for j
end
else if {d(j)> d(i) +; and cifif[clus(j)] = 1}do
/1 if cluster j is not forbidden for i

begin
dg) ;= d(i) + by 3
pred(j) ;= §;
clfjiikl=cllijfk] for all k € CL
cl [ilfctus()] == 0;
end;
end;

end;

end;

The algorithm starts from the source node, 5. The cluster s belongs to clus(s) is declared
"forbidden". For an adjacent node, j € A(}) of node s there are two conditions:

(1) j belongs to different cluster, or

(2) j belongs to the same cluster.

If j belongs to the same cluster and d(j) ~d(s) + 1, j becomes successor of node s, d(j) 1s set
to dfs) + I,, and all forbidden clusters for s becomes forbidden for j also. On the other hand, if j
belongs to a different cluster it is checked if j belongs to a forbidden cluster for s. From a non-labeled
sef S~ the node which has minimum delay is selected and procedure for s is repeated for the chosen
node. The algorithm terminates when there are no unlabeled node left in the set, S7.

CCSP uses a similar construct as the well-known Dijkstra's algorithm. When the algorithm
terminate, the predecessor array defines a tree structure induced from the network. A main variation

in CCSP is that even though an adjacent node j of 2 node 7 can hold the inequality d(i) + I, =d(j) it
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may not be admissible on the path because it may belong to a forbidden cluster for node i. Note that
CCSP is not an exact algorithm for the cluster-constrained shortest path problem. On the other hand,
an exact solution to the problem does not necessarily have a tree structure. Computationally CCSP
is proven to be a very effective heuristic although optimality can not be guaranteed. Occasionally
infeasibilities may occur when virtual clustering constraints prohibits the access of some essential path,
but this occurs rarely in the problems we tested. Since all the paths generated by the CCSP algorithm
enforce the constraints imposed by virtual clustering, it generates a set of desirable paths given the

current virtual clustering configuration.

Intra-Cluster Routing using DRA

After the (cluster-constrained) inter-cluster routing paths are found, the sequence of gate nodes
for each packet to follow is completely defined. When a packet enters a specific cluster ¢, the entering
and the exiting gate nodes become the source (s,) and the destination nodes (d,) for this packet in
cluster ¢. The collection of all packets passing through cluster ¢ form the traffic for the intra-cluster
routing problem for ¢. To generate intra-cluster routing any existing dynamic routing algorithm (DRA)
can be used. We implemented a dynamic shortest path algorithm (DRA) [8] which handles
dynamically all the intra-cluster routing problems. In other words, when a data packet enters the gate
node of a specific cluster, to reach the exit gate node of the same cluster, it follows the paths found
by DRA at that point in time instead of following the static paths determined o priori by SRA. Thus,
static optimal routing finds a priori the gate nodes sequence for each source-destination pair, while
the dynamic routing algorithm finds the exact paths between entry gate node and exit gate nodes based
on current traffic situations. The entry gate nodes and exit gate nodes of the clusters may be different
for each path, and each source-destination pair.

Clearly SRA and DRA are both integral parts of CRA. On the other hand, SRA and DRA by
thémselves can be used to represent stand-alone static and dynamic routing algorithms, respectively.
In Section 5, we compare CRA. against “pure” SRA and “pure” DRA, where routing are generated

for the entire network by a priori static routing, or by dynamic routing without using virtual clustering.
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4. SIMULATING THE PERFORMANCE OF THE ROUTING ALGORITHMS

Routing procedures such as the BG algorithm uses a theoretical estimate of packet delay as
its objective function. In order to compare different routing algorithms in a more realistic setting, we
simulate and record the actual end-to-end delay of each and every packet generated for the network.
In this section, we describe simulation procedures developed for SRA, DRA and CRA.

4.1 Simulating the Performance of SRA

Recall that for SRA the static optimal paths P2, for each source destination pair (5, ) has to
be known. Besides, we have to know network topolgy D(IV,4), capacities of the links matrix, C, and
traffic requirement matrix, F. Traffic requirement denoted by /7 for (¢, d) , is the average number of
péckets per unit time(sec) that is generated to be transmitted from a source node & to a destination
node & Packet generation is a random process which we assume that it follows a specific
distribution. f’ is the mean of that process.

At the beginning of the simulation we set the current time r=0. We create an event list which
has a linked list structure. Every event represents a generation of a packet at a source node ora
transmission of a packet on a link. Implemented as C++ objects, we define a class type "event" that
represents these events. The data fields of these class objects (event) are as follows:

source: shows the source node that a packet is going to be generated

destination: shows the destination node that a packet is going to be sent

fime: shows the number of time units from now the event is going to take place (in sec.)

cors: identify the event as arrival or service ( “arrival” represents a packet generation event
at 2 source node, while “service” represents the event of transmitting from one node to another)

node: if the event is a service event this field holds the node number that the packet 1s
currently at, if the event is an arrival event this field is set to 0.

nextnode: if a service event this field shows the nextnode that packet at a node is going to
be transmitted to.

next: this field holds the pointer to the next event.

At time O we generate only arrival events and we generate arrivals for ail source-destination
pairs and corresponding interarrival times. Then according to the time fields we sort all the events on

the linked list (see Figure 4). Important variables used in the simulation are as follows:
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Queuefirst() (): a two dimensional array of pointers that point to the first packet at the queue
of a link (i,j)

Queuelast(i) {): a two dimensional array of pointers that point to the last packet at the queue
of a link (1,j)

2VPOo! current event poihter

Totaldelay: total delay of the packets that are generated and arrived to their destinations. It
is set to O at the beginning.

Averagedeldy: total delay divided by the number of services. It is set to O.

number of services: number of packet generated but also artived to their destinations.

source souIce source source
destination destination destination; destination
- time=:t1 time= t2 times t3 times1n
N’
a0rs A0TS aors apts
list LU I
node node node node
nextnode nextnode nextnode nextnode
next next next next
11 <2 <13 <ouvan <in

Figure 4. Event Lists in the Simulation

number of packets: number of packets generated
Currenttime: clock time of the simulation
In the initial event list there is no service event, but as the simulation time proceeds service
events are generated and inserted to the event list according to their “time” fields. The following steps
take place for each event on the event list based on its type (arrival or service).
The Arrival Events
If cors ="arrival’
1. Currentfime is increased by the amount of event's ime.

2 Fvent's time is subtracted from all other events' times on the event list.
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3. A packet is generated which has the following data fields and data fields of this packet are

filled with appropriate values.
number of packets is increased by one.

ARRTime: generation time of the packet. It is set to the Currenitime:

Length: randomly generated which has a mean of 1. From random number stream by inverse
transform technique this field is set to a random number that follows some distribution.

AuMber: the number of the packet generated it is set to the number of packets

currentnode: this represents the number of the currentnode that packet is waiting at one of
its outgoing link's queues.

destination: the packet's destination node . This is copied to the current event's destination.

currentlink: a pointer to the current link in the path structure. Whenever a packet moves to
another node, currentiink advances to the other link on the path. First, path of the packet should be
found.

nexfpacket: pointer to the next packet. This is set to nil pointer. If there are no packets then
this field is set to nil.

4. Appropriate paths are found for the packet generated. There may be only one path or more
than one path (bifurcation). If there is more -than one path, one path is selected as follows: suppose
the total requiremént isf=p,+p, + P T Do Wherep, is the flow of the ith path and X is the degree
of bifurcation. Generate a uniform random number, u, and

if u<p, then pathl is selected

if p, < u<p, +p, then path? is selected

i p,+ p; +o ¥Pgy USSP/ Pt TPy then path K is selected

5. From the path structure, firstlink of the path becomes currentlink

6. The packet generated is put to the end of the queue of the outgoing link (e,
Queuslast(currentnode) (nextnode] points to the packet) if there is a queue (Figure 5). Its time
is assigned to the packet length (length) divided by currentlink's capacity. Its node field is assigned
t0 currentnode and nexinode field is assigned to nextnode. The event is then inserted to an

appropriate position on the linked list based on its time.
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7. Create the next arrival event for the same source-destination pair based on the traffic arrival
process (i.e., based on the interarrival time). After initializing all the datafields, insert this event to the
event list.

8. After processing the current event, delete the event from the event list and move on to the
next event on the list. Update evpPO.

The Service Events

if clors='service' then the following steps take place:

1 Advance Currenttime by the amount of the fime of the event and this amount is
subtracted from each event's time on the list.

The packet under consideration is to be transmitted from node to nextnode.

9 1f nextnodeof the event is also the destination of the packet, then

2a) increase NUMber of services by one.

2b) update Currenttime

2¢) Delete the packet from the event list.

Otherwise, advance the packet's currentiink to the nextlink on the path. At this point, the packet
is assumed to have reached the nextnode.
3. Delete the processed event from the list and advnace the list pointer VO to the next event.

Events on the event list are processed and deleted while new events are generated and inserted.
Up-to-minute record on packet delays (DD{N)) and number of services (nurnper of services) are
collected and updated. The simulation stop when Currenttime reaches to a predefined time, T. Also
there is a transient stage at the beginning of the simulation when the system goes from empty to the
point of steady~state. This transient period is typically excluded for performance evaluation purposes.

We test the above simulation procedure by comparing its results to the analytical values
obtained by the BG algorithm. We complete the test using standard and generated test problems using
different random number seeds, the interarrival distribution and packet length distribution are both
exponential. As can be observed in Table 1 the delay calculated from the simulation is quite consistent
with the analytic results. For low traffic tevels where the network is lightly congested simulation gives
higher delay measures, but for heavily congested networks like OCT network with the links having

71 packets/sec capacities, simulation results are slightly lower. This is parallel to the results obtained
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TABLE 1. Comparison Between

Analytic Delay Estimation and Simulated Results (Delays in milisec).

Type of | Analytic Simulated Results (for 10sec-30 sec period)
Network | Delay Seed Seed Seed Seed Average
No:l No:2 No:3 No4
RING 9.74141 10.081 9.55989 9.76579 0.88231 9.82224
ARPA 485349 | 5.3512 488806 1504416 | 5.2849 5.14208
OoCT 220.04 213.531 201.405 193.985 216,794 | 206.428
congest.
OCT 568062 161.9384 |57.8645 |63.1224 62.565 61.3257
USA 5.47422 15586 566631 | 5.49132 | 55124 5.5640
M6l 36.2959 40.3639 39.5464 398142 40.2117 39,9840
M62 33.2022 34.4908 34,6594 34.9904 37.4618 35.4006
M63 42.7931 453714 46,3812 441212 | 46.1349 45502
Mo4 51.199 55.236 54.2918 56.4514 57.4318 55.8527
M65 25.5363 27.5261 26.9147 28.1825 27.1675 271977
M31 42.6219 44,1256 43,9192 44,1056 451127 4431578
M32 70,7229 76.2514 73.3241 74,273 75,1094 74,7394
M33 | 60.512 65.1224 64.6326 64.2536 68.3527 65.59032
M34 56.6035 | 60.1571 159.1442 |59.9138 60,1225 | 59.8344
M35 73.7779 | 76.3543 78.1413 78.1676 77.1524 | 77.4539




in the literature [2].

42 Simulating the Performance for DRA and CRA

Basic elements of simulation procedures used in DRA and CRA is nearly the same as the SRA's
simulation procedure. The difference is in finding the nextnode for a packet at a specific node to arrive
its destination. For DRA, we need to define additional variables, and extend the data fields for packet
objects. Additional important variables for the simulation are:

Delay () (i): average delay of packets passing through link(i,j).

$(i}(d): It holds the nextnode information for packets that are currently at node i, to reach
destination node d. This matrix is updated for each node i frequently, we will update every 10 sec.

NP(i)(}): statistics that shows the pumber of packets passing through link (i,j).

Additional field for a packet object are NOC@ARR and NodeDPR. Node ARR keeps track of
the packet's arrival time to a node. NodeDPR is used to define packet's arrival time to the next node.
(NodeDPR - NodeARR) is the total amount of time 2 packet spends at a specific node.

We also need a new type of event “update.” Beginning from node 1 an update event is created
for each node in the network. For anode /, the event's NOdE is set to { and its Hime field is set to 10
+ (i-1)/N. When the turn comes t0 an update event, another event having same node field is created.
Tts time is set to 10. So, for node 1, time epochs that update is done is (10, 20, 30,....... ) and for node
i (10+(-1)/N, 20+(-1)/N, 30+G-1)/N, e ). All 'update’ events are inserted to the event list.

For an arrival or a service event, the simulation steps are similar to that of SRA described in
section 4. 1except the following adjustments:

- When a packet is generated there is no need to set its currentlink field since nextnode that
a packet at a specific node 7 is gomg to Jisit is obtained from S} (d) not from optimal path. So it's set
to 0.

. Whenever a service event is created nexinode for a packet under consideration is defined

by the current S())(dl) (i current node d: destination node of the packet).

“Whenever a packet is generated its NodeARR is set to the Currenttime.

“Whenever a packet is transmitted from node i to node j its NodeDPR is set to
Currentiime. The amount in NP() () is increased by 1 and packet's time delay (NOJeDPR-
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NodeARR) is added to Delay (i} (). Packet's NodeARR is set to the Currentiime.

For an update event the following steps take place:

1. Average delay for the outgoing link's of the event's node is recalculated. (Avdelay (i) {)=
Delay (Y ()/NP{) () forall j € AW where 7 is the event's node, A(i) is the set of nodes adjacent 10
node i

2. Shortest paths for all-source destination pairs are recalculated based on updated average delay
values. (For node i they are currently updated)

3 Based on these shortest paths S(I) () for allie N and j € N is updated.

4. For current node i, Delay ()} () and NP () )(j) for all j € A() 18 set to 0. (Avdelay () ()
remains the same until the next update. Meanwhile new Delay (i) () and NP () (5) will be calculated.

5. Another update event is created for the node, its time is set to 10 and it is inserted to the
event list.

For the first 10 sec, since there is no Delay value statistics, S[i]{j} matrix is obtained using
shortest hop distances. At time t=10 all of the delay statistics obtained are used to generate
corresponding shortest paths.

CRA uses cluster-constrained optimal path set instead of the set used for SRA and also
clustering structure has to be known in advance. We keep track of this structure by clus(l) for ieN.
Additional variables, data fields for packet object and additional event type 'update’ used for DRA s
also used for CRA. 1mpiementat10n. But;

_currentlink data field of a packet object is important because sometimes nextnode
calculations are done based on it (for intercluster links) so we keep track of it and it advances using
clus-constrained optimal path structure.

“Two data fields cnoO and cdest which shows the current cluster number and current cluster
destmation is added to the packet class.

“Whenever an 'update’ event is processed, shortest paths only within the clusters are defined
and found and S[i}{j] calculatmns are done based on these shortest paths assuming clusters of the
networks as seperate networks. (i.e. S[i][j] where clusfi]=clus[j] is set to -1 which shows it is not
defined) Also S{il{d] is found in such a way that d represents cluster's destination.

“Whenever a packet is generated a clus-constrained path is assigned to it and its cluster
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destination cdest is found based on this path and clustered structure. Until it reaches to that
destination it uses S(i) (cdest) matrix to find the nextnode that has to be visited. (i current node).
When it reaches, its nextnode is obtained from currentlink data. (So intra-cluster routing is dynamic
whereas inter-cluster routing is not). Nextnode is an element of different cluster so a new cdest has
1o be found also cno of the packet has to be updated. Final cluster destination is global destination

for the packet.

5. COMPUTATIONAL TESTING

To compare the performance of the proposed clustered routing algorithm (CRA) with the
conventional routing algorithms, (SRA) and (DRA) we implemented all the algorithms and the discrete
event simulation in C-++ on a IBM RISC 6000 workstation. The discrete event simulation model
specifies the specific implementation of the algorithms under realistic operational environment using
different test problems. In the following sections we describe the testing environment and the

computational results.

5.1 TESTING ENVIRONMENT

To compare CRA with other algorithms DRA, and SRA, we designed a simulation experiment
using 20 test problems. We use the 50 node random geometric networks generated by Bartolacci and
Wu[1]. But instead of homogenously capacitated networks we used heterogenously capacitated
setworks which we randomly alternate the capacities between: 155 and 185 packets/sec, and 235 and
270 packets/sec. One of the factors effecting the result of CRA is the clustering structure and number
of clusters, I'. We perform a preliminary testing investigating the effect of the number of clusters I
and clustered structure. We found that neither factors have a significant impact unless I is less than
2 certain number, In our experiments we set T'to 5 . For CRA, we used the shortesﬁ hop distances as
the distance matrix for the sake of simplicity and we use the complete linkage algorithm from the
IMSL library as the clustering algorithm.

Furthermore, connectivity, congestion, and size of the network are among the factors that may
have an effect on the result. Five of the networks generated by Bertolacci and Wu [1] has an average

connectivity of 6 and the other five of them have 3 . For highly connected networks there are more
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atternative paths for source-destination pairs. Traffic congestion is high for low capacitated networks
where oscillatio'n and loop problems increases for dynamic algorithms and congestion is low for high-
capacitated networks. As mentioned above we tested both cases. Also we set the size of the networks
tested to 50. In summary, there are 20 test problems:

1. 5 Highly connected (Degree of Connectivity=6), Heavily congested (Capacities: 155, 185
packets/sec), 50 node networks: M6H1, M6H2, M6H3, MoH4, M6EHS

2. 5 Highly connected (Degree of Connectivity=6), Lightly congested (Capacities:235, 270
packets/sec), 50 node networks: M6L1, M6L2, M6L3, M6L4, M6L5

3. 5 Lowly connected (Degree of Connectivity=3), Heavily congested (Capacities: 155, 185
packets/sec), 50 node networks: M3H1, M3H2, M3H3, M3H4, M3HS

4. 5 Lowly connected (Degree of Connectivity=3), Lightly congested (Capacities: 235, 270
packets/sec), 50 node networks: M3L1, M3L2, M3L3, M3L4, M3L5

Traffic arrival process and distributions of packet lengths are also important factors. We tested

three combinations of traffic arrival process and packet lengths:

Process 1: Homogenous Poisson arrivals (traffic generated at the source node) with A= 0.25
packets/sec for each source destination process and exponentially distributed packet length

Process 2. Uniform arrivals (mean of arrivals is 0.25 packets/sec), uniformly distributed packet
length

Process 3. Nonhomogenous Poisson arrivals (rate of the traffic changes accordingly to the
currenttime of the simulation. Figure 5 shows rate-time graphic of the process) , exponentially
distributed packet length

We believe that Process 3 is the most representative of the real world and it is also the type
of traffic CRA is designed to deal with. In most network operations, traffic rates varies during the
course of the day. For example after 12:00am at night there is less connection to the networks, but at
noon perhaps the rate is at its maximum value. We attempt to represent this traffic characteristics using
nonhomogenous Poisson arrivals.

Other simulation parameters we used in our experiments:

Simulation Length= 150 sec. (Nearly 100000 packets generation takes place during this period.

We believe that it is long enough for an accurate estimate)
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Period statistics of delay is collected= 20 sec - 150 sec. (we empirically determine that the
system reaches steady state after 20 second)

# of replications: We used 3 different random number streams represented by seed numbers.

20 networks with 3 different traffic generation process were tested using 3 different routing
algorithms, Each test was repeated 5 times using different random number streams. So 900 testings

were done on IBM/RS 6000 computers. We tabulated the results.
5,2 Computational Results

For each test problem and random number stream we labeled the algorithm that gives the
minimum delay, we then calculated the percent deviation from the minimum for each algorithms. This

is calculated as follows:

(% from best), = {Zk —Mmf {Zj }} x100%
Min, {z j}

Results are given by Tables 2-4. A few observations can be made from the tables,

1. For nonhomogeneous traffic CRA outperforms both SRA. and DRA which is consistent with
the expectation. However, notice when the connectivity is low and the traffic congestion is high (as
is the case for problem instances M3HI, M3H2, M3H3, M3H4 andM3H5) CRA does not perform as
well. This is quite reasonable since in sparsely connected network virtual clustering has less
opportunity to effect the traffic. Also notice that in the combination of sparseness and high traffic
intensity creates much higher variations in performance across the three methods..

2. In highly-connected networks under nonhomogeneous and heavily congested traffic (As
is the case in M6H1, M6H2, M6H3, M6H4, M6HS5) CRA gives the most superior results. For lightly
ioadéd traffic (M6L1- M6L5 and M3L1- M3L5) CRA provides high performance in most instances

3. For homogenous Poisson traffic and Uniform traffic CRA is often outperformed by SRA.
This is to be expected since the traffic does not vary significantly over time and the static routing
algorithm provide near-optimal results. However, the difference between CRA and SRA in these cases

are not significant. On the other hand, CRA is superior to DRA in nearly for all cases. Especialty for
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TABLE 2a) NONHOMOGENOQUS TRAFFIC ARRIVALS, EXPONENTIAL PACKET LENGTHS

% from best
Pr;‘;ef‘m Algorithm
seed 1 seed 2 seed 3 seed 4 seed 5 average ]
SRA 44,75 56.61 (.59 0.00 11.71 22.5
MEH1 DRA 12.02 33,72 19.96 4,93 13.23 20.4
CRA 9,00 0.00 0.00 0.94 .00 0.00
SRA 9,37 9.98 10,77 9.38 9.42 978
MEH? DRA 24.34 26.14 26.36 21.71 23,38 24.38
CRA 0.00 0,00 0,00 0.0 0,00 6.00
SRA 25.34 73.13 5.09 28.69 79.13 38.6
MEHS DRA. 31.04 81.67 68.39 24.67 75.20 52.62%
CRA 0.00 0.00 0.00 0.00 0.00 0.00
SRA 0.00 Q.60 0.00 (.00 0.00 0,00
MEH4 DRA 333.00 639.30 236.90 368.40 263.60 367.00
CRA 96.78 T4T2 83.60 232,40 90.25 116.00
SRA 0.85 3.67 1.09 2.94 2.41 2,18
MEHS DRA 8.63 6.24 2.50 (.96 {1.96 4.86
CRA 0.00 (.00 0.0C 0.00 G.00 (.00
SRA 7.24 8.01 7.85 6.45 4,55 6.81
MEL1 DRA 14.79 15.74 14.9C 13.19 11,72 14.0
CRA 0.00 (.00 0.00 .00 0.00 0.00
SRA 2.19 1.57 2,73 3.06 2.06 2.51
MEL2 DRA 6,02 6.85 4.73% 6,58 5.25 5.8%
CRA 0.00 0.00 0.00 0.0C 0.00 0.00
SRA 5,79 5.13 6.19 4.49 4,57 5.23
M6L3 DRA 16,81 16,89 18.58 15.16 15.72 16.6
CRA .00 0.00 (.00 0.00 .00 0.00
SRA 0.00 0.00 .00 0.00 2.00 (.00
M6L4 DRA 36.14 36.51 22.68 32,17 338.61 33.2
CRA 6.04 5.88 4,48 2.14 2.53 4.21
SRA 1.03 3.36 0.80 3.04 2,18 208
MEL3 DRA 15.39 15.51 13,36 12.86 14.43 14,30
GRA .00 (+ 00 .09 00 000 (1 90




TABLE 2 b) NONHOMOGENOUS TRAFFIC ARRIVAL

S, EXPONENTIAL PACKET LENGTH

Test Algorithm % from best
Probiems Sl ——

seed 1 seed 2 seed 3 seed 4 geed 3 average
SRA 21.14 6,71 0.00 24,27 (.00 0.00

M3H]
DRA 0.00 0.00% 54,54 0.00 10,11 2.19
CRA 22,38 7.60 0.86 25.55 2.32 1.18
SRA 6.50 0.00 30.05 0.00 32.43 9,55

M3HZ
DRA 0.00 0.53 (.00 15.55 0.00 0.0G
CRA 10.31 3.78 70.26 3.51 37.48 20.2
SRA 0.00 0.60 0.00 0.00 0.00 0.00

M3H3
DRA 23.79 33,61 64,73 1.73 28.48 29.9
CRA 70.63 8,96 2037 64.56 34,21 39.0
SRA 0.00 0.00 .00 .00 0.00 (.00

M3H4
DRA 80,80 103.6 114.0 96.41 93.62 97.
CRA 82.33 66,58 145.1 142.3 62.93 99.7
SRA 3.51 7.58 431 11.12 6.97 5,70

M3IH35
DRA 2.66 2518 20.85 9.67 7.80 13.1
CRA 0.06C 0.00 0.00 0.06 .00 0.00
SRA 2,31 4,52 431 4.02 2.44 3.51

M3L1
DRA 7.81 12,40 13.05 10,07 8.46 10.
CRA 0,00 0.00 .00 .00 0.00 0,06
SRA 0.77 1.66 .80 0.03 1.03 1.06

M3LZ
DRA 6,59 6.68 4.98 5,70 6.59 6,31
CRA 0,00 0,00 0.00 0.00 0.00 0.00
SRA 6.77 §.44 3.73 5,81 1.34 4.78

M3L3
DRA 28,44 26.81 24,71 22.44 20.64 24,5
CRA 0.00 0.00 (.60 0.00 0.00 0.00
SRA 11.35 5.11 13.11 12.15 10.18 10.3

- M3L4
DRA 2181 23.39 28.94 26.87 21.80 24,5
CRA .00 0.00 0.00 (.00 0.00 0.00
SRA 2.98 3.35 6.64 3.07 2.57 3.71

M3L3
DRA 2.52 111 1.79 2.07 2.05 1.91
CRA 000 [eXl9) 0 (4} (.00 {) 00 0G0




TABLE 3a) UNIFORM TRAFFIC ARRIVALS, UNIFORM PACKET LENGTH

Test Algorithm b from.besl,
Probiems
ssadl seed seedd spedd o donsged St SVIASR. e
SRA, 000 0.00 000 .00 0.00 0,00
M6H1
DRA, 4.15 2.41 4.03 7.08 321 4,17
CRA 0,75 0.51 0.87 0.43 .89 .69
SRA 0.00 0.00 0.06 0.00 28,21 0.00
MeHZ
DRA 26.78 19,06 0.00 19.47 0.00 5,83
CRA 9.24 12.33 4.12 8,57 38.60 831
SRA .00 0.00 0.00 0.00 0.00 (.00
MoH3
DRA, 4,61 3.46 3.65 4.61 4.00 4.06
CRA 2.52 2.39 2.34 221 1.91 223
SRA (.00 (.00 0.00 0.00 0.00 (.00
M6H4
DRA 200.2 127.9 23 224.0 407.8 240,
CRA, 47.74 50.49 50,29 77.08 69.56 59.0
SRA. 0.00 0.60 0.00 0.00 0.00 0.00
MGH3
DRA 11.86 10.53 11,95 11.42 10.59 11,2
CRA .87 1.01 121 1.26 1.28 1.12
SRA, .00 0.60 0.00 0.00 0.00 .00
M6H1
DRA 2.33 1.48 1.49 177 1.02 1.62
CRA 1.15 0.61 0.81 0.82 0.74 0.82
SRA (.00 0.00 (.00 0.00 0.00 0.00
MeL2
DRA 2.74 2.10 2,65 3.02 2.83 2.67
CRA, 1.57 2.04 1.53 1.51 1.42 1.62
SRA 0.00 (.00 0.60 0.00 0.00 G.00
M6T.3
DRA 6.56 6.06 399 7.10 6.57 6.46
CRA 3,74 3.73 3.08 291 4,21 3.54
s SRA 0.00 0.0C 0.060 0.00 . 0.00 0.00
M6LA
DRA 15.16 15,08 16.29 17.85 16.66 16.2
CRA 763 7.00 7.50 7.57 822 7.59
SRA 0.00 0.00 0.00 0.00 (.00 .00
M6LS
DRA 3.22 3.10 4.04 3.49 4,54 3,68
CRA 0.34 .48 .58 0.48 0.54 G.53




TABLE 3b) UNIFORM TRAFFIC ARRIVALS, UNIFORM PACKET LENGTH

Test Algorithm % from best
Problems
seed 1 seed 2 geed 3 seed 4 seed 5 AVErage
SRA 9.00 (.00 0.00 0.00 0.00 0,00
M3H1
DRA 0.10 4.28 1.36 121 0.53 1.50
CRA 0.31 0.32 (.34 0.07 0.22 0.25
SRA 0,00 0.00 .00 0.00 0.00 0.00
M3H2
DRA 1.46 i.12 2,68 7.93 1.74 2.98
CRA 1.50 1.66 20.83 1.47 1.38 5.33
SRA 0.00 0.00 0.00 £.00 0.00 0.00
M3H3
DRA 11.11 i6.81 10,56 11.61 10.48 12.12
CRA 10.97 9,79 11.60 8.09 9,67 1601
SRA 0.00 0,00 .00 0.00 0.00 (.00
M3H4
DRA 50.93 51.28 46,56 49,80 61.27 51.97
CRA 235.64 25.48 24.94 26.42 28.94 2628
SRA 225 0.19 0.93 (.63 (.68 (.92
M3HS5
DRA .00 (.00 0,00 0.00 0.0C 0.00
CRA, 2.27 0.37 1.29 {.89 9.73 i1l
SRA 0.00 3,00 .00 0.00 0.05 0.00
M3L1
DRA. 1.52 2,42 1.49 1.79 1.56 1,75
CRA 0.19 0.03 0.40 0.51 0,00 0,21
SRA .00 .00 0.0G (.00 0.00 0.00
M31.2
DRA 1.98 1.36 1.54 2.81 1.47 1.83
CRA (.93 0.91 (.99 0,90 1.440 1.03
SRA 0.00 0.00 0.00 0.00 .00 0.00
M3IL2
DRA 7.91 6.28 6,68 7.51 6.54 6.98
CRA 4.54 5.64 5.18 5.88 3,12 527
SRA 0.00 (.00 .00 0.00 0.00 0,00
M3L4
o DRA 3.84 3.64 3.48 3.46 2.75 3.44
CRA 3.60 31.67 3.67 3.47 3.83 3,65
SRA 0,00 0.61 0.02 .18 .00 0,06
M3L5
DRA {,52 0.00 .00 (,00 0.00 0.00
CRA 0,96 0.41 0.76 .48 {.46 0.3%




TABLE 4a) HOMOGENOUS TRAFFIC ARRIVALS,

EXPONENTIAL PACKET LENGTH

"Test Algorithm Yhitombest .
problem
seedl J sasd 2 sgedd _seedd L seedd AYEIAZE,
SRA 0.00 0.00 2.0¢ 040 000 nen
M6H]
DRA 15,10 16.43 3.60 10.74 4132 17.5
CRA 5.07 4,41 5,10 7.23 6.84 5,73
SRA .00 0.00 0.90 .00 0.00 0.00
MeHZ
DRA 1535 13.90 12.83 14.18 14.98 i5.26
CRA 8.03 10.49 8,34 11.12 9.52 9,50
SRA 0.00 0.00 6.87 11,21 .00 0.00
M6
DRA 24,93 17.87 0,00 0.00 34.68 18.0
CRA 26.58 18.35 22,92 27.14 2503 i8.9
SRA 0.00 0.00 0.00 0.00 6.00 0.00
M6Ti4
DRA 478.2 6473 432.8 486.2 509.9 510.38
CRA. 246.7 124.1 158.3 231.0 193, 191
SRA 0.00 0.00 0.00 0.00 0,00 0.00
M6H3
DRA 4277 39.39 48.42 40.57 65,86 47.3
CRA 6.40 5.84 65.64 5,18 6.98 6.41
SRA 9.00 .00 0.00 0.00 .00 0.00
M6L1
DRA 10.04 8.58 7.11 6.66 9,59 3,47
CRA 3,20 3.19 3.53 4.i1 3.90 3.58
SRA 0.00 0.00 .00 0.00 0.00 0.00
M6L2
DRA 7.98 10.06 7.09 8.42 9.13 8.53
CRA 4.67 4,30 5.54 6.71 5.90 5.45
SRA .00 0.0 0.00 0.00 0.00 0.00
M6L3
DRA 23.381 22.64 21.98 23.08 23,00 22.9
CRA 10.54 11,32 12.13 11.22 10.635 11.1
SRA 3.00 .00 0.00 .00 0.00 0.0C
M6L4
- DRA 62.07 66.42 56,62 67.48 61.22 62.7
CRA 31.48 28,52 26,89 34.59 28.68 30.2
SRA 0.00 0.00 0.00 0.00 0.00 0.00
M6L3
DRA 13.33 17.06 13.27 13,66 14.87 i4.4
CRA 431 1.60 2.01 2.61 221 2.55




TABLE 4b) H

OMOGENOUS TRAFFIC ARRIVALS, EXPONENTIAL PACKET LENGTH

Test Algorithm % from best
Problems

seed 1 seed 2 seed 3 seed 4 seed 5 average
SEA 0.00 0.0 (.00 (.00 0.00 0.00

M3H1
DRA 6.10 5.62 9.44 2.31 18.52 8.43
CRA 5.66 6.5 4,04 4.73 3.18 5.04
SRA 0.00 0.00 0.00 Q.00 .00 0.00

M3H2
DRA 15.32 27.60 5.90 19.54 13.85 16.36
CRA 5.96 572 6.87 6.13 4,99 5.94
SRA 0.00 0.00 0.00 £.00 0.00 0.00

M3H3
DRA 17.47 22.91 30.37 22.54 23.58 23.43
CRA 14.49 41.80 72.54 84,93 18.36 46,39
SRA 0.00 0.00 0.00 G.00 0,00 0.00

M3H4
DRA 697.0 2407 137.2 163.0 223.9 292.3%
CRA. 77.15 69,77 99,75 87,44 70.56 £0.04
SRA 0.00 0.0¢ 0.00 000 0,00 (.00

M3H35
DRA 4.07 16.99 3.98 6.10 591 7.3%
CRA 3.00 5.95 10.17 6.64 1130 7.83
SRA (.00 .00 0,00 0.00 0.00 0.00

M3L1
DRA. 8.03 3.89 6.92 574 11.85 7.68
CRA 6,47 4,61 4.20 5.00 5.50 5.15
SRA 0.00 0.00 0.0¢ (.00 0,00 0.00

M3L2Z
DRA 5.99 8.79 4.71 5.27 7.47 6.43
CRA 4,34 378 4.57 4.05 3.26 4,00
SRA 0.00 0.00 0.00 0.00 .00 0.0C

M3L3
DRA 17.67 20.52 15.19 20.33 19.04 19.35
CRA 12.00 12.50 10.4G 14.72 16.97 12.12
SRA 0.00 0.00 0.00 0.00 0.00 0.00

M3L4
DRA 15.63 13.74 13.29 12,27 13.77 13.74
CRA 13.85 13.68 14.75 13,95 14,45 14.14
SRA 0.00 0.00 (.00 0.00 9.00 Q.00

M3L5
DRA 1,25 473 2.43 1,97 2.70 2.61
CRA 3.25 2,67 2.84 2.53 2.82 2.82




highly-congested cases DRA performs very poorly compared to SRA and CRA. If one consider CRA
as a dynamic routing algorithm which uses virtual clustering as a means of processing, this
preprocessing appears to be very effective. This supports strongly the idea of using virtual clustering
to balance and regulate global network traffic while using decentralized dynamic method for real-time
TOuting.

4 Tn addition to mean values in delay we also collect the variance data from the test instances
[15]. We observe a high correlation between the mean and the variance of delay figures. Variance of
the delay is high especially for heavily congested networks. It appear that there is a point of saturation
in network capacity. Before this point is reached delay increases smoothly and variance is
comparatively low. But once the saturation point is reached the fevel of delay increases sharpiy.
However, since there is no significant difference i1 variances among different algorithms for the same
delay levels, we do not show the variance figures in the results for the interest of briefness.

5.The performance of CRA over all traffic patterns appear to be quite robust. This
performance can be further improved in practice since in our experiments we fix the number of clusters

["to 5. One may choose to adjust " over time and make CRA abitrarily closer to SRA or DRA.

5. CONCLUSIONS

We propose a new routing algorithm for telecommunication networks which reconfigures the
network topology by means of virfual clustering. We found that this method balances and regulates
the global network traffic while allowing flexibility for real-time decentralized routing. Given a virtual
clustering we identify near-optimal static paths for inter-cluster traffic using a flow-deviation
algorithm. A dynamic routing algorithm is used to handle fluctuations over time for intra-cluster
traffic. We compare this routing scheme with pure static and dynamic routing algorithm using discrete-
event simulation. Test results show that the proposed algorithm outperforms the other algorithms for
nonhomogenous network traffic where traffic rates between source-destination pairs change by the
course of the simulation time.

The proposed approach can be applied to other stochastic network routing problems  similar
1o telecommunication networks. By clustering individual nodes variance in traffic flow tend to reduce

which make analytic optimization models more suitable. In this paper we tested only one particular
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pattern of nonhomogenous traffic. Different types of traffic patterns can be experimented to further
study the performance of this routing scheme. We believe that testing routing algorithms under

nonhomogenous and nonstationary traffic processes has significant practical importance.
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