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Abstract

Most planning and optimization methods in manufacturing logistics assume centralized
or hierarchical decision making using monolithic models. Motivated by the increasing
needs to coordinate diverse decision processes and systems, we investigate an auction-
theoretic mechanism for production coordination in a supply chain. Our efforts focuses on
structural mappings between mathematical decomposition and iterative auction
mechanisms wherein agents compete base on their local wtilities, annouced conflict
pricing, and production targets. Building upon the rich literature in optimization and
auction-theoretic analysis, we investigate the advantages and limitations of this
distributed decision scheme on a large set problems in supply chain production planning.
Experimental results show that the proposed auction mechanism provides impressive
improvement over traditional monolithic method without significant degradation to the
solution quality.



1. Introduction

Manufacturing competitiveness has escalated globally in the past two decades.
Manufacturing firms experience increasing pressure to improve production efficiency,
responsiveness to market changes, and substantial cost reduction. This increasing
pressure is particularly evident in industries that have short product life cycles and
complex supply structures, as is the case in automotive, electronics and semiconductor
manufacturing. While the productivity and efficiency of manufacturing systems have
been studied extensively, broader logistical issues spanning multiple levels of
manufacturing facilities or multiple firms are not well understood. Manufacturing
logistics is an emerging area of research that refers to "all planning, coordination and
service functions required to carry out manufacturing activities between the point where
end-item customer demands are determined, and the point where they are fulfilled” (Wu,
et al. 1998). Among various topics in manufacturing logistics are planning and
coordination of production across multiple facilities, and integration issues between
manufacturing and other functional areas such as marketing, transportation, distribution
and warehousing.

This paper focuses on the study of distributed decision paradigm for operational
coordination among manufacturing facilities. As a manufacturing entity seeks
coordination with their internal or external customers and suppliers, it is quickly
confronted with difficulties associated with different operational conventions, locally
specific constraints, conflicting objectives, and misaligned incentives. If some form of
centralized coordination is to be formed, significant time and resources must be first
devoted to resolve these differences. However, as the level and the scope of coordination
increase, the notion of centralized coordination breaks down at a point where the system
complexity reaches its limit, and some form of decentralized coordination with local
autonomy become unavoidable. Hierarchical decision making has been suggested to cope
with the system complexity through decomposition, aggregation and feedback
mechanisms. We propose a different approach to this problem using the notion of auction
and market equilibrium. We believe that most decision entities in manufacturing have
their own unique perspectives and economic incentives. Rather than forcing all decision
entities into some unified decision structure, it may be helpful to view them as
autonomous agents acting on their own behalf. Through the use of competitive market
mechanisms these decision agents may be coordinated based on a much simpler set of



policies while their long-term behavior can be predicted and modeled by various
equilibrium conditions.

A main advantage of the new approach is the drastic simplification in information
management. A basic paradigm in conventional Enterprise Resource Planning (ERP)
system is one that seek "total visibility" of system details in a top-down, hierarchical
manner. This is accomplished by maintaining painfully detailed information of all
perceivable aspects of the organization using sophisticated information and database
management systems. This information must be kept up-to-date since it serves as a basis
for decision making throughout the organization. In a distributed system, since agents
make locally autonomous decisions based on privately owned information and local
preference/constraints, centralized information management can be decoupled and the
monitoring and maintenance of information can be segmented and manipulated at a far
more efficient manner. Analogous to the fast growing World Wide Web platform, this
new paradigm facilitates interconnected software agents to communicate and to
reconciliate their decisions through a universally agreed upon domain of information
exchange.

A Multi-Facility Production Coordination Model

To submit the notion of distributed production coordination under rigorous testing, we
reformulate a well-known production planning model in the literature to demonstrate the
effects and implications of this new decision paradigm. The model we use is the mulfi-
level, multi-item lot sizing problem (MLMILP). MLMILP can be defined in a multiple
tier supply chain context as follows: given external demand for end items over a time
horizon, a bill-of-material structure for each end item where the production of
subassemblies may be spread across multiple facilities, find a production plan over
multiple facilities that minimizes total inventory holding and setup costs. The main
restrictions are that (1) items can be only produced after all their predecessor components
{(within or outside the facility) are available, (2) resources within each facility have
limited capacity, and (3) no backlogging is allowed for the end items. To envision this
mutli-facility production environment, Figure 2 presented later for computational testing
may be useful. |

MLMILP is a monolithic model as it implicitly assumes that each production facility in
the supply chain is willing to reveal its local constraints and cost parameters, and is ready



to implement a centrally imposed solution. This assumption can be unrealistic especially
when the production facilities are each owned by a different firm. Even in the case where
all facilities are owned by the same company, the communication requirement and intra-
company politics may render the use of monolithic models impractical. In this paper, we
will show that regardiess of its limited assumptions MLMILP is useful for the studying of
decentralized production planning, especially if we are interested in the performance of
such system in correspondence to "global” optimal. For this purpose, we reformulate
MLMILP as a coordination problem where facilities are viewed as supplier-customer
pairs who negotiate with one another mutually agreeable production plans. Using the
viewpoint of the monolithic model, this defines a facility-based decomposition where
each facility is responsible for their own production while relying on or supplying to other
facilities according to the bill-of-material structure. We study a pricing mechanism
designed to eliminate inconsistencies between local solutions of each supplier-customer
pair.

In the next section, we summarize related literature in both production coordination and
production planning. In Section 3, we present the MLMILP formulation and two
reformulations. We point out some of the fundamental issues of the traditional model and
propose a new performance measure. In Section 4, we explain why Lagrangian
decomposition does not work as a price-directive approach and introduce an auction-
theoretic coordination mechanism. Section 5 presents main experimental results, and
Section 6 concludes the paper.

2. Related Literature

Bhatnagar et al. (1993) present a survey on multi-plant coordination. They divide
coordination into two broad categories: coordination among different functional areas
such as production planning, distribution, and marketing, and coordination of the same
function across multiple layers of the organization. Our treatment of production
coordination falls into the latter category.

Mcafee and Mcmillan (1987) define auction as a market institution where an explicit set
of rules determine, based on "bids" from market participants, the ultimate resource
allocation and payoff. The generic sequence of events in an iterative resource-allocation
auctions is as follows: the market participants, or agents, disclose their specific requests
for the shared resources at the announced prices so as to optimize their local utilities. The



center, or the auctioneer, determines a new price for the shared resources using a price
update mechanism based on current demands. The goal for the center is to interactively
resolve conflicts among all agents, which lead to an equilibrium state where no agent can
be better-off without worsening some other agent's utility. (Rassenti et al. 1982), (Banks
et al. 1989), and (Kutanoglu and Wu 1997) have all proposed auction mechanism to
complex resource allocation problems. To the best of our knowledge, there is no auction-
theoretic mechanism suggested for multiple facility coordination in the framework of
MLMILP. The proposed coordination mechanism are motivated by the work of Jose and
Ungar (1998) where they suggest a so called "slack resource auction” mechanism for the
coordination of interacting process units within a plant.

Another line of relevant research is that of the solution methods for multilevel lot sizing
models. This line of work provides fundamental insights on the interdependency among
production decisions in the context of monolithic optimization. If social welfare,
collective cost efficiency, or global optimality is of interest, these models provide useful
mathematical insights as well as performance benchmarks. MIMLSP is a difficult
combinatorial problem. It has been shown that even finding a feasible solution to the
problem is NP complete (Maes et al. 1991). A few exact methods existing in the literature
(Pocket et al. 1991, Chapman, 1985) are quite limited in problem sizes. A majority of
research has been concentrated on heuristic approaches.

A wide range of heuristic methods have been proposed for multilevel lot sizing. Zahorik
et al. (1984) describe an optimization-based heuristic, employing a 3-period network flow
formulation of the problem with no setup cost or time. Billington et al. (1986) introduce a
branch and bound heuristic using Lagrangian relaxation. It is assumed that the capacity
restriction exists at a bottleneck resource in the BOM structure. Maes et al. (1991)
explore the complexity of finding feasible solutions to capacitated MLMILP and present
three similar heuristics for the solution. The three heuristics differ in the way they round
the binary setup variables, which are obtained from LP relaxation. Roll and Karni (1991)
present a heuristic approach which consists of the application of eight different
subroutines. These subroutines either convert an infeasible solution to a feasible one or
improve a given solution. Maes and Van Wassenhove (1991) extend their ABC algorithm
(Maes and Van Wassenhove 1986) for capacitated single-level lot-sizing problems to
multilevel problems with serial BOM structure. Kuik et al. (1993) use simulated
annealing and tabu search methods where the search neighborhood is defined on the setup
variables. They show computationally that these heuristics are effective when compared



to Maes et al. (1991). Tempelmeier and Helber (1994} address four variants of a two-
phase heuristic approach for the problem. They later propose an effective Lagrangian
relaxation heuristic (Tempelmeier and Derstroff 1996). In this method, they relax the
inventory and the capacity constraints to obtain single-item wuncapacitated lot-sizing
subproblems. Since efficient O(nlogn) algorithm is available for this subproblem, they are
able to develop efficient subgradient search algorithm for the overall problem.

A majority of the literature takes a monolithic view of the production planning problem
which severely restricts its implementability in multi-facility environments. In the
following, we will examine the notion of multilevel multi-facility coordination using this
classical model as a basis.

3. Problem Formulation and Reformulations

There have been several formulations for MIMLSP in the literature (Stadtler 1996). We
give a formulation of the problem similar to that presented in Tempelmeier and Derstroff
(1996). Without loss of generality, we exclude production costs from our formulation.

~k: : binary setup variable for item & in period £. iz = 1 if gz > 0 and vy = 0 0.,
ay; + number of units of item & required to produce one unit of item <.
bj; : available capacity of resource j in period ¢.

dys @ external demand for item & in period t.

by, : inventory holding cost for item k.

sy, © setup cost for item k.

: number of resources.

: the resource where item & is produced

: number of items.

-« set of items that are produced by resource 7.

: number of periods.

: a large number.

ZERRRS S

: set of items that are immediate successors of item £ in the product structure.
it : lot size for item k in period ¢.

thy, : production time per unit of item .

try @ setup time of item k.

. Y : inventory of item k at the end of period £.

z(k) : deterministic minimal lead time for item %.



The monolithic production formulation is as follows:

(MP)
T K
Min > (Piyes + 81Vt
te=1 fpe=1
subject to
Yato1  Qroma(e) = D ki — Yt = i k=12, K; t=12,..T (1
€N
> (traye + thigre) < byt i=1,2.,J; t=12_..T7 (2
=59
qkt"M’YkiSO ]{‘,=1,2,..,K‘, f}=1,2,..,T (3)
qktEO; yktZO; Vit € {071} k'=112:"1K; tz}-)z:":T (4)

The above model is quite common in the lot-sizing literature. The object is minimize
inventory holding and setup costs. Constraint set (1) describes the mass-balance
relationships between item inventories in the system over time, capacity restriction is
forced by constraint set (2), while the production and setup relationship is represented by
constraint set (3). This model captures several important aspects of the production
planning problems: the BOM structure as characterized by ay; which defines the supply
structure required to produce the end-item, the fundamental trade-off between setup and
inventory, and the complicating factor of limited capacity.

To explore multi-facility coordination, we reformulate the above model by introducing a

new variable, ., as depicted in Figure 1.

Figure 1. New variable z7,,.



We define z;,, as the production output (input) from (to) facility r associated with the
product (BOM) link (k,7) in period ¢. Further, we introduce an a priori determined
production target parx,,, into the model as a parameter. The problem with these addition
elements is as follows:

(MP')

i Tr K
Min 37 37 (haee + Skvae)

te=lfo=1
subject to
Ykttt Qiet —%akixq];—gt = Ykt ‘m':dkt ke == 1:25'-7K; = 1,2,--,T (5)
1EN,

Xy = Gt Vk,$) € L; t=1,2,.,T (6
Xp = DT Xy Vk,9) € L; t=1,2,.,T (7)
Xy = POTXpy Vi) € L; t=1,2,.,T (8)

(2), 3), and (4).

Without loss of generality, we assume lead time z{k) to be zero for all items k. In the
above reformulation, constraint sets (5) and (6) together represent the mass-balance
relation between item inventories in the system. Constraint set (6) represents a just-in-
time policy where no component is sent before needed. A simplifying assumption here is
that any component that is produced in period ¢ must be available for use in the upper
layer during the same period. Parameter parx,, represents a placeholder for the to-be-
agreed on flow on product link (k, 7) in period ¢ by the associated facilities, i.e. r and r;.
We will refer parx,;,'s as the target parameters.

To further explore the essence of production coordination we now introduce the notion of
fairness as perceived by facility-centric agents. We define the fairness of a solution as
how evenly the facilities share the burden of compromising their respective facility-best
solutions for the system-feasible solution (any solution feasible for MP). With these ideas
in mind, we introduce the following definitions:

ddern; : Derived demand for item { in period ¢ (demand for item k corresponding

to the demands for end items in period t assuming no initial inventory in the

system), where

ddemp=Y " apiddemy

&N

Derived demand constraint : Total amount that a facility sends out by period ¢,



has to be greater than or equal to the total derived demand by period £,,,. Let R
be the set of facilities, this constraint is as follows ;

tm Im
3o 3 xk = >, ddemy Vr€ R, Vk€ Kty = 1,2,3,..,T
i=1 (ki)eL f=1

Facility-best solution: The solution of a facility-based submodel that satisfies its
own derived demand constraints without taking into consideration its supplier or
customer facilities' production schedules. Leaving the precise formulation for the
facility sub model to later, we define A, for each facility » as the value deviation
of a system-feasible solution from its facility-best solution:

T
Ar =3 5 (hpyrs + skvie) — (facility — best solution for facility r)

t=1 ke K,

We then define the average deviation A across all facilities :
A = (5 A;)/No. facilities

5

Given the above definitions, we now define a benchmark “pure distributed problem”
(PDP), which has the goal of minimizing unfairness across facilities.

(PDP)

Min "6,

s.t.

§ > A —A Vre R (9)
6 > — (A, —~A) Yre R (10)

In this problem, constraint sets (9) and (10) ensure that the condition 6, = |A, — Al is

satisfied. Thus, the model basically minimizes the total absolute deviation from A,

A 1
Defining a ratio o, = —TA we can see that PDP also minimizes ZIO"" ~E I where
T

"

1 A
| R] is the cardinality of the facility set. Thus, 7] is the value that —; should take for

s

all facilities r if a solution is perfectly fair. A related question is what should be the
maximum achievable unfairness a solution can ever have. This question can be
formulated more formally as follows:



(PDP")

Maleag.- T}—%Tl

s.t.

Yar=1 (11)
a, >0 VreR (12)

As it tums out, for problem (PDP') there is a rather straight forward answer. This is
explained in the following proposition.

Proposition: The optimal solutionto PDP'is onewhereoneof the a's,reR, isl
and others areQ . The value of the optimal solution is (| R — 1) RI + (1 T Y.

Proof:Letb,.zlifcvr—l—}%l>Oandb,.w —1if O‘TWT%ET < 0. Then we can write the

objective function of PDP’ as follows ;
Maa:}:b(a,nmw) Mam[Zb ar] [‘%{Zbr]
T

The maximum value of the first term in the expression above is 1 where one of the «,'s is
1 and the rest of them are 0, which is also the solution that maximizes the second term.
This is the optimal solution defined in the proposition. The value of the solution is trivial
to figure out.L]

Following is an obvious result of the proposition .

Corollary:  Valueof the optimal solutionto PDP', or the mazimum fairness o
solution can achieve, 15 monotonically increasing in |R| and bounded by 2, thatis
ORI~ ey + -] 5

3R] “Trp ~°

and

lim (|R| - 1 o
am_ (R

ey + 0 g =2

4. Problem Decomposition



In this section we examine two different decomposition of the reformulated MIMLSP.
The decomposition reveals properties which relate the mathematical structure of
monolithic optimization, decentralized decision making, and auction-theoretic
coordination. We first examine a more standard Lagrangian decomposition approach for
(MP).

Lagrangian Decomposition: Lagrangian decomposition is first proposed by Guignard-
Spielberg (1984) as an alternative to Lagrangian relaxation. Here, we first replace
constraints (7) and (8) in (MP") by the following constraint;

Te !

A, = L, Vik,é) €Ly t=1,2.,T (7)

We then Lagrangian relax this linking constrain (7)) between facilities, thus (MP')
becomes facility-separable. Denote f. the objective function of facility r in the facility
submodel, and C). the subset of the remaining constraints (2),(3),(4), and (5) associated
with facility ». Then the Lagrangian decomposed model of the problem is expressed as
follows:

(@LD): Min {3 f.| Cr, v € R}

T

where fr= 3 | 30 (heyme +sivee) + D0 MeaXpy — 0 2 Mt XNy
te=1l keK, {(kd)eL|rk=r} {(kD)eLlri=r}

and the Lagrangian dual problem is as follows:

(LDD) : Maf{M'én {3f|Cr €R}}

Standard method to solve the Lagrangian dual problem (LDD) is subgradient search or
dual ascent. From the viewpoint of decentralized decision making, one may draw a
connection between the subgradient search method and a price-directive decision making
scheme known as adaptive auction tdtonnement with regular payment function
(Kutanoglu and Wu, 1997). Under this auction scheme the center announces the conflict
pricing A in each iteration, while decision makers from each facility solve a facility-
subproblem. However, this auction scheme is not without problems. First, as discussed in
(Kutanoglu and Wu, 1997), a market clearing condition may never be achievable since a
non-zero duality gap is likely at convergence. This requires the center to impose a market



clearing (feasibility restored) solution. Worse, with linear local objective f;, each facility
subproblem converges to its own extreme point solution regardless of conflict pricing A.
This results in the oscillation where the auction does not even converge to a lower bound
solution but oscillate from one facility optimal o another.

To explore this particular auction scheme we implemented a adaptive auction
tdtonnement similar to that of subgradient search for (LDD). We indeed encounter the
problem of oscillation for a significant portion of the test cases. After examining more
closely this decentralized implementation of (MP"), some addition insights can be offered
as to what causes the oscillation: first, the peer-facility imposed demand x;;'s are not
hard constrained except for the facilities producing end items (assuming there is no
external component demand). In fact, z;;'s are determined solely based on the costs and
conflict pricing Ay As a result, variable z;;'s take either zero or the maximum value
possible. For instance, when x;;'s represent the outflow of a facility, they would be zero
if Api = hg since sending item % out will be more expensive than holding it. When the
converse is true, Z;;'s take the maximum value possible. In conclusion, while Lagrangian
decomposition defines a mathematical structure amenable for decentralized decision
making at the facility level, its inherent problems concerning duality gap and oscillation
suggest that such scheme may be unstable.

Auction-Theoretic Decomposition: To overcome inherent problems associated with the
above decision scheme, we develop a new decomposition amenable to an adaptive
auction tdtonnement with augmented payment function, according to the categorization in
(Kutanoglu and Wu, 1997). We first define inconsistency as the total mismatch between

the solutions of facility submodels i and &, i.e.,(kg}; L; Ik, — x5
IE

We then redefine the facility objective and constraints, f.and C,, respectively, as
follows:

T
fr= 201 20 (hatiie + s6vke) + > A — par@ea| +
t=11 kek, {(k)eLlrk=r}

i )
At WX — parTis|
{(kgyeLiri=r}

Define the facility constraint set C’; as the original set C, and the derived demand
constraints associated with facility r (as defined in Section 3). With this definition of f,
and C,, we state the auction-theoretic decomposition as follows:



(AD): Min {3f,| C;, 7 € R}
» B T

arT

Note that (AD) is facility-separable. Further, any solution to AD with zero inconsistency
is a feasible solution to the original problem MP. In other words, if an auction is to be
designed based on the mathematical structure of (AD), there is now a market clearing
condition via price update. There is no longer the need for the center to interfere and
impose market clearing solutions. We will now show that (AD) defines a mathematical
structure amenable to an auction like coordination mechanism for decentralized decision
making.

An Auction-Theoretic Coordination Mechanism: Consider a supply chain environment
where production facilities need to coordinate their production planning so as to satisfy
end-item customer demand. Consider further that each facility is represented by a self-
interest (but truthful) agent who computes its local production plan, x,, given the
currently announced conflict pricing A;,'s and production targets parzyy's. The facility
agent negotiate their production plan with one another using an iterative auction scheme.
In each iteration, the auctioneer updates the conflict pricing A,,'s and target parameters,
parzyy's, using current AL,'s, parayy's and current production plan (x;;). The updated
parameters are used by the facility agents in the following iteration.

In addition to concerns on convergence and feasibility, an important aspect for the auction
mechanism is that of fairness as characterized in Section 3. Since agents are self-interest,
it is no longer reasonable to assume that they will accept just any solution for the
"common good." Indeed, the global optimal solution may not be fair to all agents relative
to their facility-best solutions, and therefore corresponds unstable agreements or simply
non-implementable in reality. The fairness consideration is an integral part of the
following coordination mechanism.

(The Auction-Theoretic Coordination Mechanism):

1. Each facility agent finds its facility-best solution given the current information
2. The center initialize parz,; to the averages of the facility-best solutions as
follows:

Tr ri
Xpip + Xt

paryy = )



set all A75's and AJL,'s to zero.

3. Each facility agent solves its facility subproblem as defined by (AD) using the
current set of parzi's, A%,'s, and AJ%.'s. Report the production plan xf,.

4. If the current inconsistency is less then a prespecified threshold or the iteration
limit is exceeded, goto 9.
5. The center compute a price scale as follows:
> o1
price scale = [penalty ratio] x - . —
> bk — parzw| + 1, — parzy|

(k#)eL

6. The center updates parzy;'s as follows:
N etk 7 el
Oy Ly Oy, Ly
o + o

party = | party + ( )1/2 Vik,9) € L;

t=1,2,.,T
7. The center updates A%, as follows:
N =Nk, o+ [price scale] x |z, — paras| and
Npy=ALs, -+ [price scale] x @, ~ paray|
Vk,ty € Li;t=1,2,.,T

8. Adjust the penalty ratio depending on the rate of convergence, which is defined as
the percentage change in inconsistency in the last M number of iterations.
Increase iteration counter by one and go to 3.

9. The center has the option of accepting the current solution as is, or alternatively,
the center may {ix the non-zero setup variables 7y in the current solution and
solve the LP-relaxation of problem (MP), then announce the resulting solution,
STOP.

In the coordination mechanism, each agent'first finds its facility-best solution as a starting
point for negotiating the production plan. In each iteration, the auctioneer forces the
facility solutions to reduce overall inconsistency by updating conflict pricing and target
parameters. The amount of increment in prices is proportional to total current
inconsistency (step 5) and to individual deviations from target parameters, ie.
|2}, — parzry| in step 7.



In updating the target parameters, we use both current parameters and current associated

P

solutions in Step 6. Note that we weigh the current solutions according to o, = A ,

T

which measures the amount of "suffering” facility r experiences as compared to the

average. Thus, the facilities that "suffers” more than the average would have more
influence on the new farget parameters. To further control the degree of this effect, we
take the nth power of the weight o, in step 6.

To allow the auction mechanism to tune its convergence rate, we introduce the penalty
ratio as a leverage. In step 8, the mechanism may increase or decrease the penalty ratio
by a fixed amount by observing the convergence up-to-date,

5. Computational Experiments

To submit the above coordination mechanism under rigorous testing, and to gain insights
on overall solution quality and fairness across facilities, we conduct intensive
computational testing on 300 standard test problems for MIMLSP.

Test problems: We use a subset of standard test problems (set B) in Tempelmeier and
Dorstrof (1996}, kindly provided by the authors. This subset consists of 150 problems, 75
of which has the non-cyclic product structure and the other 75 with (potentially) cyclic
product structure, Each problem involves 10 items, three facilities A,B, and C, and four
periods.

Non cyclic Cyclic

Figure 2 : Problem structures.

The product structure and the assignment of items to facilities is depicted in Figure 2. The
75 test problems are generated using three end-item demand structures with different



coefficient of variation, five combinations of time-between-orders {(a factor for the
determination of setup costs), and five capacity utilization profiles. The problem
generation details can be found in Tempelmeier and Derstroff (1996). Our tested
problems are the ones with the "first setup time profile" in their paper.

Comparing different coordination schemes

We implemented four different coordination schemes for comparison: optimal, pure
distributed, coordinated, and center-imposed, these schemes result in four types of
production planning solutions. Optimal corresponds to the optimal solution of (MP), pure
distributed is the optimal solution of the model (PDP), coordinated corresponds to the
solution that the auction-theoretic mechanism converges to (without center-imposed LP
solution in Step 9), and center-imposed is center-imposed LP solution in Step 9. To
establish comparison, we have define the following two performance measures:

Percent deviation from optimal:
dfo =100 xA solution — Optimal solution

Optimal solution

Fairness of a solution across facilities :

fos = E Ear— I/No. facz'litiesl
T
Clearly the second performance measure is of interest from the viewpoint of

implementable production coordination, while the first measure provides benchmarks for
the quality of the production plan. Two sets of ex;ieriments are run: the first set of
experiments is carried out using the regular 150 problems described above. The second
set of experiments involve the solution of the same problems except the unit setup and
inventory holding costs are multiplied by 5 for items produced in facility B. We will refer
this second set of problems as the high-cost problems. This second set of experiments are
designed to study the effect of a high-cost facility on the performance of the coordination
mechanism. Of particular interest is the effects on solution fairness fos. In both set of
experiments we solved each problem by setting the parameter n=3 in step 6. We use the
following parameter setting in step 8 throughout the experiments:

Initial penalty ratio = .001
Step size for increasing or decreasing penalty ratio = 0015
Iteration interval to check convergence rate = 4 iterations



Upper limit for convergence rate = .15
Lower limit for convergence rate = .02

These parameters are set based on experiences from a small number of pilot problems.
The general tendency is that lowering the values these parameters increases the solution
quality while increasing in the number of iterations needed for convergence.

Results and analyses

We summarize the computational results in Tables 1-3. Our main focus is on the
coordinated solution while the other alternatives provide benchmarks from different
perspectives of the coordination. The coordinated results represent an auction-theoretic

coordination scheme for production decisions.

Table 1: Deviations from optimal (d fo).

Center-Imposed | Coordinated Pure

sol. sol. Distributed sol.
Non-cyclic Regular 8.19 17.66 39.89
High cost 9,33 14.93 33.17
Cyclic Regular 2.80 4.24 44.50
High cost 1.65 2.99 31.04
Averages 5.49 9.95 37.15

Table 1 provides the deviations from optimal in terms of objective value d fo. Each cell
represents the average over the corresponding 75 problems. The most interesting result
the table shows is how far away the pure distributed solution can be from optimal, which
averaged 37.15 % for the 300 problems. This also shows the potential gap between
classical optimization approach and the distributed decision paradigm. dfo of pure
distributed solutions surprisingly does not seem to be dependent on the problem structure
even though there are much less number of inter-facility product links for cyclic problems
compared to non-cyclic ones. The coordination mechanism performs much better for
cyclic problems for the simple reason that there are less number of inter-facility product
links to coordinate for these problems compared to non-cyclic ones.

Table 2: Fairness of the solutions (fos)



: Pure .
Center | Coordinated |\ butea| OPtimal
Imposed

Non-cyclic | Regular 6124 4473 .0041 5807
High cost .5503 4568 .0924 6225

Cyclic Regular .8700 6977 0152 8591
High cost 8884 6778 .0139 9163

Averages 7303 5699 0314 7446

Table 2 gives the fairness measure of the four different schemes. The maximum
unfaimess for our three-facility problems is % according to the Proposition in Section 2.

The smaller the figures on this table are, the better fairness is achieved.

As evident from the table, the coordinated scheme outperforms both center-imposed and
optimal in terms of the fairess measure fos in all problem types. Although center-
imposed solutions are the solutions that are partially determined by the auction
mechanism (the setup variables), they operate similar to that of optimal. Again, we see a
significant gap between optimal and pure distributed solutions. It is interesting to note
that percentage wise the gap is much wider than the optimality gap observed in Table 1. If
we look at the fairness of the optimal solution we see that the optimal is less fair for high
cost problems compared to regular ones. This is intuitive since in high cost case, the
facility with high costs is more dominant in the optimal sclution. There is no significant
difference in this manner for the coordinated solutions which is in line with how the
coordination mechanism is design to accomplish.

Table 3: Comparison with optimal in fos measure.

Center-Imposed | Coordinated Pure distributed
Better- % Better- % Betier- %
than- Average than- Average than- Average
optimal | improve- | optimmal | improve- | optimal | improve-
cases ment cases ment cases ment
Non- | Regular 31 3.05 57 23.36 75 99.28
cyclic | High cost 42 25.52 51 29.58 75 58781
Cvei | Regular 26 10.11 54 31.09 75 98.15
YN¢ "High cost 21 16.42 65 28.32 75 98.09
Averages 30 13.77 56.75 28.09 75 95,83

In Table 3, we present a comparison between opfimal and the three coordination schemes
in terms of the fairness measure fos. We give the average percentage improvement over



the optimal, and the number of cases (out of 75 problems) in which the coordination
scheme outperforms the optimal. The coordinated scheme outperforms the optimal on the
average 56.75 out of 75 cases, or 75% of the time. The average improvement of the
coordinated scheme over the optimal is 28.09%. To put this into perspective, this is
accomplished with the sacrifice of 9.95% in solution quality (from optimality) as given in
Table 1. As for the pure distributed solution, there is a 95.83% improvement in fairness
together with the sacrifice of 37.15% in solution quality. Performance of the coordinated
scheme appears to be independent of the problem structure. Average improvement of the
coordinated scheme is more for high cost problems than regular ones.

If we compare coordinated solutions and center-imposed solutions in Table 3, the former
significantly outperform the latter. This confirms the potential of the auction theoretic
coordination scheme since the full effect of the coordination comes without the needs for
significant center intervention toward the end.

6. Conclusion

The distributed decision paradigm discussed in this paper has potential to enjoy broad
acceptance and success in today's increasingly distributed business environments. Large
manufacturing supply chains presents a typical example for such planning environment.
In this study, we attacked a classical production planning problem directly related to the
issues of supply chain coordination. Using this model, we demonstrate the an auction
theoretic mechanism can be constructed to coordinate production planning in such
environment. This coordination scheme provides significantly more implementable (fair)
solutions then what monolithic optimization is able to provide, paying the price of some
solution quality degradation.
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