Extensions of and Uses for
the Differencing Algorithm
for Number Partitioning

Robert H. Storer
Lehigh University

Report No. 99T-09

Extensions of and Uses for the Differencing Algorithm for Number Partitioning

Robert H. Storer

Department of Industrial and Manufacturing Systems

Engineering

The Manufacturing Logistics Institute

Harold 8. Mohler Laboratory

200 West Packer Avenue

Lehigh University

Bethlehem, PA 18015-1582

rhg2 @Lehigh.edu

The Number Partitioning problem entails dividing a list of numbers into two sets so as to minimize

the absolute difference of the sums of numbers in each. Number Partitioning is one of the six basic NP-
complete problems identified by Garey and Johnson (1967), and is often used to prove other problems
difficult by reduction. Few if any other uses for Number Partitioning have been reported. In this paper we
present uses for, and extensions of the basic differencing algorithm (Karmarkar and Karp, 1982) for
Number Partitioning. First we demonstrate that randomized versions of the differencing algorithm can be
very effective for number partitioning. Then we employ these algorithms to build more complex heuristics
for problems with embedded number partitioning. Specifically we address: 1) the problem of partitioning
items into multiple groups (also known as "Multi-Processor” or "Parailel Machine” scheduling), 2)
partitioning problems with certain cardinality constraints and subset sum problems, 3} stochastic number

partitioning, and 4) balancing weights around axes of symmetry (including the well-studied trbine rotor

blade balancing problemy}.

Number partitioning is a well known, fundamental combinatorial optimization problem. Indeed it
is classified as one of the six basic NP-complete problems by Garey and Johnson (1979), and has been used
extensively to prove other problems NP-complete through reduction. Johnson et al. {1991} rekindled
interest in number partitioning in one of a series of three papers. These papers tested simulated annealing
algorithms on a diverse set of problems one of which was number partitioning. Their results showed that
long runs of carefully devised simulated annealing algorithms could rarely do better than the simple
differencing algorithm of Karmarkar and Karp (1982). Two conclusions stood out from the paper of
Johnson et al.:

1) The differencing algorithm obtains miniscule objective function values in O(NlogN) time.

2) The paper’s statement that there were no known applications for number partitioning
with the possible exception of coding theory.

The power of this simple algorithm led us to explore its use as an integral part of heuristics for solving more
complex problems.

The number partitioning problem is particularly easy to state; partition a set of numbers into two
mutually exclusive sets minimizing the absolute difference of the sum of the two sets. Equivalently, we
seek to minimize the maximum (over the two sets) of the set sums. Letting a, for i=1,...,N represent N
numbers to be partitioned, and S and S’ represent the two sets after partitioning, then the problem can be

stated as:

There is no restriction on the cardinality of S and § so that more numbers may be in one set than in the
other.

The number partitioning problem has several properties worthy of note. First, standard integer
programming approaches appear completely unsuited for this problem. Indeed even relatively small
instances will cause difficuity for algorithms such as CPlex 6.5 as we have verified experimentally. One

can attempt to explain the reason for this as follows. Define T as the sum of the numbers:

T= z": &
i=]

Then the number partitioning problem can be formulated as a zero-one integer program by recognizing that

the sum of one of the two sets must be greater than or equal to T/2, leading to the following formulation:

n
Min D a(0.5%)
f=l

subject to:
n
Y a(0.5%) 2 0
i=1
%€ {0,1}
To providing insight into the difficulty of this problem we attempt to apply Lagrangian relaxation on the
first constraint. The relaxed problem is:
n
Min (1-4) >, a(05-%)
=1
subject to:
e {0,1}
For A > 1 the solution to the relaxed problem sets all x; = 1, for A < 1 all x; =0, while if A=1 , all solutions
have objective function zero. Thus for any value of A except 0, the solution to the relaxed problem actually
maximizes the difference in the sums of the two partitioned sets. When A=0, any solution is optimal for the
relaxed problem. The point of this exercise is to show that there is no useful information provided by
duality theory, and thus standard math programming approaches are ineffective. While we do not preclude
the possibility that a more clever formulation or approach may work well, we believe it to be unlikely.

To illustrate the ineffectiveness of standard integer programiming methods, we generated a problem
with N=100 numbers randomly distributed as IntegerUniform(1,999999999), and used Cplex 6.5 to solve it.
The highlights of this exercise appear in Table I. We were actually surprised that Cplex was able to solve
this problem, although it took over 64 million branch and bound nodes and several hours on a PC running at

400 MHz.

(Table I here)

A second interesting property is that commonly used and powerful local search heuristics such as
simulated annealing and tabu search, which are based on interchange neighborhoods, are also completely
unsuitable for number partitioning. This fact was demonstrated quite clearly in Johnson et al. (1991). An
interesting conclusion of the paper was that, despite a guite sophisticated implementation of simulated
annealing, and extensive computation time, the algorithm performed quite poorly relative to the
performance of the simple differencing algorithm of Karmarkar and Karp (1982). Johnson et al. (1991)
point out that any local search algorithm based on neighborhoods defined by swapping elements between
sets can be expected to perform poorly due to the “mountainous” topology of the objective function over
this neighborhood. Thus the two most powerful and commonly used approaches for combinatorial
optimization problems (integer programming and local search) both appear unsuited for number
partitioning.

A third interesting property that seems not to have been widely recognized is that, in some sense,
nurnber partitioning problems are easy. It is of course necessary for us to better define and then
demonstrate what we mean by this point; one of the key points of this paper. The basis for this statement is
that there are very effective constructive heuristics for number partitioning beginning with the Karmarkar-
Karp differencing algorithm. In addition, researchers have recently proposed even more powerful heuristics
which are all essentially randomized versions of the differencing algorithm. These algorithms can solve
many number partitioning problems to optimality with high probability, a claim we justify empirically
subsequently. Further, the larger the problem instance in ferms of N, the easier it apparently is to find
optimal solutions. (However, as the number of digits in each number increases, number partitioning
problems become increasingly difficult). These effective algorithms can be used within more complex

algorithms for solving problems with “embedded” number partitioning problems as we will demonstrate.

2.0 Background
The basis for all good known heuristics for number partitioning is the simple and elegant single
pass “differencing algorithm™ proposed by Karmarkar and Karp (1982). The basic differencing algorithm

as described in Johnson et al. (1991) is as follows:

Differencing Algorithm

0. Create N nodes each labeled with one of the numbers a;.
Place all nodes in the set “live”.

1. Let u and v be the nodes in “live” with the largest and second largest labels
respectively,
Add an arc between u and v.
Remove v from the set “live”.
Relabel u with a, - a,.
Repeat step 1. N-1 times (until one node retains in “live”).
2. The resulting graph will form a tree. Two color the tree to determine the
pattition.
The labei of the last remaining live node at the end of step 1 will be the objective function value of
the partition (or “partition value”). At each iteration of step 1, placing an arc between nodes u and v puts

them on opposite sides of the partition, although which side remains to be determined later once the entire

tree is constructed. Also note that two coloring a tree is a trivial exercise.

2.1 Extensions to the Differencing Algorithm

Extensions to the basic differencing algorithm have been proposed by Storer, Flanders, and Wu
(1996), and by Arguello, Feo, and Goldschmidt {1996). The algorithms in these papers are similar, and are
essentially randomized versions of the differencing algorithm. In this section we review the algorithm
proposed by Storer, Flanders, and Wu (1996), propose a modification, and show empirical results on
algorithm performance. These empirical results are designed to substantiate the claim that number
partitioning is in some sense “easy”.

To describe the algorithm proposed in Storer, Flanders, and Wu (1996) we first present an

alternative description of the differencing algorithm:

(Algorithm Al)
0. Place the numbers in a list sorted from largest to smallest.
1. Let u and v be the top two numbers on the list.
Remove u and v from the lst. Calculate a new number u-vl,
2. Merge lu-vl back into the list as follows:

Starting at the bottom of the sorted list of numbers aj; and going up, compare hu-vl to ag;
until index d is found such that lu-vl < ay

Merge fu-vl just below agg in the list,

Repeat steps 1 and 2 until one number remains on the list.

The merge operation of step 2 has complexity on the order of O(N). Since it is repeated N times,
the overall complexity of the algorithm is O(N%. Algorithm A1 will determine the objective function value,
but additional computation is required to determine the actual partition (one would keep track of the tree,
and perform the 2-coloring).

We have found that a small improvement in performance of the merge operation of step 2 is
possible by starting at the bottom of the list and going up rather than going down from the top. Presumably
a more sophisticated merge procedure could reduce the complexity even further. However, in order to
develop a randomized version of the algorithm, we rely on this naive merge operation.

In Storer, Flanders, and Wu {1996) algorithm A1 was randomized by first scrambling the sorted

list a bit. It was implemented as follows:

{Algorithm A2)
1. Create “perturbed numbers” by = a; +
where the v, are Uniform(0 , 0) deviates and 6 is a tuning parameter
2. Sort the list from largest to smallest according to the b; values.
{Note that the list still contains a; values. The b; are used only in the sorting of the list).
3. Apply steps 1 and 2 of algorithm Al to the resulting list, and observe the objective

function value,

Repeat steps | through 3 many times, and report the best objective function value found.

Algorithm A2 does not explicitly generate the partition (i.e. assign each number to one of the two
sets). To accomplish this, one would need to remember the random number seed used to generate the b,
values which lead to the best solution found. One can then reapply algorithm A2 while at the same time
building the tree, then apply the two coloring step.

A slight modification to algorithm A2 can improve the run time while maintaining the same level
of performance. In algorithm A2, the sortation order is scrambled slightly in order to “trick” the

differencing algorithm into generating alternative solutions. We have found that it is not necessary to

scramble the entire list to accomplish the desired effect. Instead we scramble only the 20 largest elements
of the sorted list. In cases where N<20, we scramble all elements. This modification eliminates much of
the sortation effort (subsequent to the first iteration when the original numbers must be sorted). This

modification does not seem to diminish algorithm performance and leads to:

(Algorithm A3)
0. Sort the numbers g; from largest to smallest.
For iterations = 1 to (say)1000
1. Create “perturbed numbers” for the first 20 numbers on the list:
by = #; + u; for i=1 1o 20
where the u; are Uniform(0 , §) deviates and 6 is a tuning parameter
2. Sort the first 20 numbers from largest to smallest according to the b, values.
(Note that the list still contains a; values. The b; are used only in the sorting of the first

20 elements of the list).

3. Apply steps 1 and 2 of algorithm Al to the resulting list, and observe the objective
function value.

4. If the solution is the best yet, save it, and the seed used to generate the b, values
Next iteration

5. Generate the best partition given the seed saved in step 4.

In the description above we have specified 1000 iterations. This seems to be a reasonable number
that gives good results. Clearly better results are possible with more iterations, but the Jaw of diminishing

returns seems to take effect around 1000 iterations.

2.2 Preliminary Computational Testing

In this section we present a brief empirical summary of the performance of aigorithm A3. In the
first experiment we investigate the effects of the tuning parameter 6 while in the second experiment we
demonstrate the power of the algorithm.

In the first experiment, we generated uniformly distributed integers in the range 1 to 999,999,999,

We generated 1000 test problems each for problems of size N=10, 20, 30, 40, 60, 80, and 100. We then ran

Algorithm A3 with varying values of the tuning parameter 6. In this experiment, 8 is defined as a
proportion of the range of the data. Thus € = 0.04 indicates that the b; are distributed IntegerUniform[Q ,
40000000]. The resuits of this experiment are shown in Figure 1.

(Figure 1. goes here)

The results show that there is an optimurm value of 8 which varies as a function of problem size.
However, the results also show that algorithm performance is quite insensitive to 8 as long as 0 is large
enough. If 0 is too small, algorithm A3 will generate only a small number of solutions repeatedly thus
degrading performance. As long as @ is large enough to scramble the first 20 numbers sufficiently,
algorithm performance will be consistent over a wide range. As a result, and to keep things simple, 8 =
(.04 * Range is used in subsequent experiments.

Figure 2 shows the performance of the differencing algorithm and of algorithm A3 as a function of
N. In figure 2 we plot the partition value divided by the range of the numbers in the problem. Each plotted
point represents the average over 1000 randomly generated probliems with 9 digits (i.e.

IntegerUniformj 1,999999999]1).
(Figure 2 goes here)

Figure 2 shows that algorithm A3 provides roughly 3 orders of magnitude improvement over the
differencing algorithm for problems with 100 numbers, and that extremely small partition values, relative to
the range of the numbers, are easily achieved.

The second experiment was designed to indicate the performance achievable from the differencing
algorithm and from the randomized extension. Test problems were generated with N=10, 20, 30, 40, 60,
80, and 100 numbers, and D=2, 3, 4,...., 9 digits. Thus for D=4, the numbers are IntegerUniform{] , 9999]
and 6 = 0.04*10000. In addition, two methods were used to generate the numbers. Method 1 simply
generates the numbers randomly. For problems generated randomly, it is difficult to know the optimal
solution due to problem complexity. However it can be said that if a solution is found with a partition value
of 0 or 1, then that solution must be optimal. The second problem generation method (Method 2) generates
the numbers in such a way that the optimal solution is known to be 0. The first N-1 numbers are generated

randomly while the last number is generated so as to guarantee that a partition exists with value 0. Two

sums are injtialized to zero. As each of the N-1 numbers is generated, it is added to the smaller of the two
sums. Then the last (Nth) number is set equal to the absolute difference of the two sums. For each problem
generation method, and for each DxN combination, 1000 problems were generated. Tables II and I1I show
the performance of algorithm A3 and the differencing algorithm (respectively) on randomly generated
problems. Tables IV and V show the performance of algorithm A3 and the differencing algorithm
(respectively) on problems with known optimal solution. Values in the tables show the percentage of the
1000 problems for which the optimal solution was found.

(Tables I to V go here)

For problems of size N=10, the relatively low percentages in Tables II and III do not mean that the
optimal was rarely found, but rather that the optimal is rarely 0 or 1. For problems of size 100 or larger we
see that the optimal solution value of randomly generated problems is invariably equal to O or 1.

The basic conclusion one draws from the tests is that the number partitioning problem is, in some
sense, easy. Randomlu generated problems with 5 or fewer significant digits can be solved optimally with
high probability. Problems with 9 significant digits can be solved optimally when the problem is small
(N<20) or large (N>250). Intermediate problems with many digits cannot be solved optimally. However,
the objective function values are extremely small relative to the magnitudes of the numbers to be
partitioned. Tt is also worth pointing out that both the differencing algorithm and algorithm A3 run
extremely quickly so that computational effort is rarely an issue.

Most practical problems rarely have more than 5 significant digits of accuracy in the problem data.
Certainly 9 digits is enough to capture what is known about a real problem. Thus we conclude that for
practical problems, the number partitioning problem is essentially easy. For more complex problems which
have “embedded number partitioning” our approach s to embed the above algorithms within more complex
heuristics. In the rest of the paper we develop algorithms for some well-known problems using this

approach,

10

3.0 Number Partitioning Extensions
In this section we briefly illustrate how one can develop heuristics for 3 extensions of the basic
number partitioning problem; 1) fixed cardinality number partitioning, 2) the subset sum problem, and 3)

stochastic number partitioning,

3.1 Fixed Cardinality Number Partitioning

In number partitioning there is no restriction on the size of the two sets of numbers after
partitioning. Suppose one desired an equal number of numbers in each of the two sets (assuming N is
even). This can be achieved by:

1) sorting the numbers,
2) taking the difference of each pair of consecutive numbers, and
3) solving the resultant number partition problem (which has N/2 numbers).

This is equivalent to joining each pair of consecutive (in the sorted list) numbers with an arc,
thereby placing them on opposite sides of the partition. This guarantees an equal number in each set in the
final solution. Interestingly, the objective function values degrade very little when equal cardinality is
enforced (as we have verified empirically).

Similar tricks can be used to enforce other cardinality requirements (e.g. 40 numbers on one side,
60 on the other). For example to obtain a 60-40 split of N=100 numbers, replace 20 randomly selected

numbers with their sum, then apply the equal cardinality number partitioning algorithm.

3.2 Subset Sum Problems

One may use number partitioning algorithms to solve the subset sum problem which seeks a subset
of the numbers who’s sum is as close a possible to a target value (perhaps without exceeding the target
value). Suppose a given set of numbers sums to T=400 and our desired subset sum target is B=80. We
create a new number, an,; = 240, and add it to the list. The total sum is now 400+240=640. After applying
a number partitioning algorithm, the two partitions will sum to approximately 640/2 = 320 on either side.
One of the sides will contain the added number ay,; = 240. The remaining numbers on this side will sum to

approximately 320-240 = 80 and is thus the desired subset.

|13

In general if the numbers sum to T and the subset sum target is B, then the number we add to the
problem is ans; = IT-2Bl. When 0 < B < T/2 the desired subset will be on the same side of the partition as
ans1. When T/2 < B < T, the desired subset will be on the opposite side from an.. We envision running a
randomized algorithm such as A3. In this case roughly half of the solutions generated should yield a subset
sum less than the target (for problems requiring the sum to be less than or equal to the target).

To illustrate how equal cardinality and subset sum algorithms might be used in practice, we refer to
the recent article by Chu and Antonio (1999) on cutting stock problems in the steel rod industry. In this
problem, rods exist in inventory that must be cut up to fulfil ordered rods of various sizes. An important
sub-problem in their algorithm is to select exactly b rods from the set of orders to be cut from an inventory

rod of length L. Thus they seek a subset of specified cardinality (b) and specified sum (L).

3.3 Stochastic Number Partitioning

In this section we demonstrate that a stochastic version of the number partitioning problem can be
solved by solving a deterministic version of the problem. We require an assurption that the Central Limit
Theorem applies to the sums over each set in the partition. The stochastic problem that we solve is
described as follows:

Let a; , i=1,...,N be independent random variables with E(a)) = [; and V(a) = o .
We seek to partition the a; into two sets denoted by A and B s0 as to minimize the expected value of the
maximum of the set sums.

Let SA=Z£II and Sszzm

€A i€B

N N
Let 7 =Y ai, et E(T)=p, = 4, and let V(I) =07 =2 0/
s}

HEH

We seek to Minimize B[Max(S, , Sp)]. Naturally we assume that numbers must be assigned to
partitions before the outcomes are observed.

Let D =S, ~ Sg.

12

Lemma 1:

The partition which minimizes E[IS, - Sg [] is equivalent to the partition which minimizes

EiMax(S, , Sg)}i

Proof:
2Max(S, . Sp) = 5S4 + S + IS, - Sl
=28, when S, 2 Sp
= 285s when S, < Sg
Thus B[Max(S, , Sp)] = 2E[Sa + Sg + 1S4 - 55l]

= Yalir + VRB[IS 5 - Sgl]

Theorem: When the random variables a; are such that the Central Limit Theorem can be reasonably
assumed to apply to S, and Sg, then the stochastic number partitioning problem can be solved by solving
the deterministic problem on the expected values E(a;).
Proof:
Let u, = E[Y ai] and let g, = ELY ail
e A ek

Then D~N(u,~My,07)

The random variable IDI is distributed according to the “Folded Normal”. As discussed in Leone, Nelson,

and Nottingham (1961), the expectation of Dl is given by:
By = N2 o e Hr R (= 1= 2F (= = 1)/ 0]

where F(a) = =12 4y s the standasd Normal cumulative distributi on function

1 j'[e
N b
tipi is an increasing function in Ita - P! as can be seen by taking the derivative which can be shown to be:

dfiip . ~{, — Hp)
=l 2F =)

13

We see that the derivative is positive for positive (14 - Mg}, and negative for negative (Ua - Mg} Thatis, Wpy
increases in it - Pgl. This in turn implies that the partition minimizing Ijks - ksl also minimizes E[Max(S, ,
Sp)]l. Note that minimizing ilta - Upt is just the deterministic number partitioning problem solved using E(a;)
as data.

The Central Limit Theorem can be reasonably assumed when the a; are independent, the variance
of the sums S, and Sp are not dominated by one, or a few of the random variables a;, and the cardinality of
the sums is large enough. For example if the a; are iid and if the cardinality of each sum is more than 12,
the Central Limit Theorem assurnption is usually considered reasonable. Conversely when the Central Limit
Theorem does not apply, solutions to thé deterministic and stochastic problem may differ. This may be
proven with the following counter example:

Let a; and a, both have the distribution: P(X=0) = 2/3, P(X=3) = 1/3 with E(X)=1

Let a; = 0.99 and a4 =1.01 be constants. Assume all a; independent.

Case 1; The Partition A = {a), 3}, B = {2y, a4} leads to us - Pai=0

Table VI. Calculations for number partitioning solution to example problem.

a az Sa ay a Sp Max(S4,55) Prob
0 0 0 0.99 1.01 2 2 4/9
0 3 3 0.99 1.01 2 3 2/9
3 0 3 0.99 1.01 2 3 2/9
3 3 6 0.99 1.01 2 6 1/9

Let Y = Max(Sa, Sg). Then P{Y=2) = 4/9, P(Y=3)=4/9, P(Y=6)=1/9, and E(Y) = 26/9

Case 2: The Partition A = {a;, 23}, B = {a;, a4} leads to lu,s - Upl = 0.02, and

Table VII. Calculations for optimal solution to example problem.

& a3 Sa s 4 S Max(S4.5p) Prob
0 0.99 0.99 0 1.01 1.01 1.01 419
0 0.99 0.99 3 1.01 4.01 4.01 2/9

14

3 099 39 0 1.01 1.01 399 29
3 099 399 3 1.01 4.01 4.01 1/9

P(Y=1.01)=4/9 P(Y=4.01)=3/9 P(Y=3.99)=2/9, and E(Y) = (24.05}/9

Thus the deterministic solution does not yield the optimum solution to the stochastic problem in this
example.

While this example shows that solving the deterministic problem will not work in all cases, we
believe that in many, if not most, real problems the Central Limit Theorem is a reasonable assumption. In
closing we also note that this approach can be extended to multiple partitions (stochastic paraliel machine

scheduling) using the method of the next section.

4.0 Parallel Machine (Multi-Processor) Scheduling

Number partitioning algorithms may be used within a more general scheme to partition numbers
into M groups rather than just two. This problem is generally known as “parailel machine scheduling”, or
“multi-processor scheduling”. We have M identical machines, and N jobs indexed by j. Each job has a
processing time pj, and must be assigned to one of the machines. The goal is to assign jobs to machines so
as to minimize the total completion time of all jobs (i.e. the makespan). When there are M=2 machines, this
problem is precisely number partitioning.

Our number partitioning based algorithm begins with an initial solution generated by assigning
jobs to the M machines using the well-known “Longest Processing Time First (LPT) algorithm” (Graham
1969). In the LPT algorithm, jobs are assigned to machines one at a time starting with the job with Jargest
p; and proceeding in sorted order. At each iteration, the next job is assigned to the machine with the least

amount of work (smallest sum of p; , ties being broken arbitrarily).

From this initial solution we find the machine with the largest sum and the machine with the
smallest sum. Numbers (p;) from these two machines are merged together to form a single set. In our
implementation, the differencing algorithm is employed to “repartition” the numbers into two groups. This

repartitioning step s applied repeatedly until an iteration occurs which does not improve the makespan.

15

The basic idea behind the algorithm is to reduce the largest sum at each iteration thus reducing the
makespan.

This number partition based algorithm was tested against the LPT aigorithm and the Multifit
algorithm of Coffman, Garey and Johnson (1978). Multifit and LPT are probably the two best known
algorithms for multiprocessor scheduling. Problems with N=50,75,100,125,150,175,200,225,250 jobs and
M=5,10,15,20,25,30,35,40,45,50 machines were generated. All combinations of N and M were used except
where N/M<2. For each N, M pair, 1000 problems were generated with random processing times
distributed Uniform(0,1). Results of this experiment appear is figures 3 and 4. Performance is measured as
percent above lower bound where the lower bound is given by the sum of the p; divided by M. All three
algorithms were coded by the author and run on a PC with a Pentium processor running at 266 MHz.

(Figures 3 and 4 go here)

The results show that the number partitioning based algorithm can achieve several orders of
magnitude improvement in the percentage from lower bound for problems with relatively large N/M ratio.
While this improvement comes with increased computation time, the number partition based algorithm is
quite fast, never taking more than 0.02 seconds of elapsed time.

Finally, we note that the number partitioning based algorithm could be modified in several ways.
First, if one desires less computation time, the algorithm can be run for fewer iterations. Instead of running
until an iteration with no improvement is found, one could instead run k iterations where k is chosen to
balance run time and performance. Figures 5 and 6 show results from running the number partition based
algorithm for only 4 iterations on the same data sets used to generate figures 3 and 4. We see that the run
times are reduced significantly, but that performance degrades as well. Never-the-less, the number partition
based algorithm appears to be a viable competitor of multifit for problems with larger N/M ratios.

(Pigures 5 and 6 go here)

A second alternative is to go in the other direction and achieve better performance with increased
computation time. For example one could use a randomized version of the differencing algorithm such as
algorithm A3 in place of the differencing algorithm. Further, if no improvement is found when applying a
number partitioning algorithm to the pooled jobs from the “longest” and “shortest” machines, one could try

pooling jobs from the longest and second shortest machines in an attempt to achieve further improvement.

16

We have implemented these ideas and found performance similar to that of the number partitioning
algorithm in that extremely small objective function values can be obtained (of course at the expense of
much greater computation). Details of these experiments may be found in the master's thesis of Snyder

(1995).

5,0 Turbine Rotor Blade Balancing

The turbine rotor blade balancing problem has been studied by several authors including
Amiouny, Bartholdi and Vande Vate (1997), Mason and Ronngvist (1997), Laporte and Mecure (1988),
Fathi and Ginjupalli (1993}, and Mosevich (1986). Many authors use quadratic assignment problem
models, and/or employ various versions of local search to find solutions, (the most recent such approach
being Mason and Ronnqvist 1997). The most recent paper we found on turbine rotor blade balancing is
Amiouny, Bartholdi and Vande Vate (1997) (forthcoming in Operations Research) who develop
constructive heuristics for the problem. In this section we will develop number partitioning based heuristics
and compare the results to those of Amiouny, Bartholdi and Vande Vate (1997).

The turbine rotor biade balancing problem simplifies to one of placing the fan blades (each with
known mass w;) at equally spaced intervals around a circle so as to make the center of mass as close to the
center of the circle as possible. Amiouny, Bartholdi and Vande Vate (1997) propose several heuristics of
which two seem to dominate, ordinal pairing and greedy pairing. Ordinal pairing requires very little
computation time and produces good results while greedy pairing requires more computation, but gives the
best performance of the heuristics developed. Both heuristics begin by sorting the blades from heaviest to
lightest. Next consecutive pairs in the sorted list are placed across from each other on the circle. The two
algorithms differ as to how the locations of each pair of blades are determined. Ordinal pairing places the
blades in a fixed pattern. Letting 1 represent the heaviest blade, 2 the second heaviest, efc., the placement
pattern for ordinal pairing is shown in figure 7a. In greedy pairing, the placement location is determined by
a greedy algorithm, For each pair, all possible open positions on the circle are examined, and the position
which yields the center of mass (of currently place blades) closest to the center of the circle is chosen.

We propose an alternative heuristic that uses an embedded number partition algorithm. We begin

by placing the blades in random locations on the circle. Then we choose two perpendicular axes of

17

symmetry as shown in Figure 7b (as has been the custom in all previous work on this problem, we assume
an even number of fan blades). Next we balance the center of mass around “the X-axis” then around “the Y-
axis”.

To balance the center of mass around an axis, we consider pairs of weights which are symmetric
with respect to the axis as shown in figure 7¢. First we arrange each symmetric pair so that the heaviest
weight in each pair is on the same side of the axis (actually we do this to make the algorithm description
simpler). Next we create a single number d; for each pair of weights (i = 1 to N/2) as shown in Figure 7d.
This number d, is the center of mass of the pair with respect to the axis of symmetry. We next apply a
number partitioning algorithm to the set {dy, d, ... dup} of pairwise centers of mass. The result of
partitioning is two sets of pairs. The final step is to arbitrarily select one of the two sets of pairs, and
interchange the weights of each pair in that set. The result will be that the center of mass with respect to the
axis of symmetry will be nearly balanced and equal to the objective function found by the number
partitioning algorithm.

The final step of the algorithm is to balance the center of mass with respect to the second
perpendicular (Y} axis of symmetry. We apply the same algorithm as in the last paragraph. A key
observation is that applying the algorithm to produce balance around the Y-axis does not effect the balance
around the X-axis obtained in the first step.

Following Amiouny, Bartholdi and Vande Vate (1997), we generated blade weights from a Normal
distribution with a mean of 100 and standard deviation of 5/3. We generated problems over a range of sizes
from 20 blades to 200 blades. Again following Amiouny, Bartholdi and Vande Vate {1997), we assume the
circle radius 100 and that the objective function is the Euclidean distance between the center of mass and
the center of the circle. For each problem size, 1000 instances were generated. Three algorithms were
compared, ordinal pairing, greedy pairing, and the number partition based method. The number partitioning
problems were solved using the differencing algorithm. All three algorithms were coded by the author and
run on the same PC. Results appear in Figures 8 through 11. Figure 8 shows the objective function value
averaged over 1000 problem instances for each problem size. Figure 10 shows the elapsed runtime required

to solve all 1000 problems of a given size. The results are striking. The number partition based algorithm

18

improves on greedy pairing by up to three orders of magnitude yet runs in roughly the same time as ordinal
pairing.
(Figures 8 through 11 around here)

Amiouny, Bartholdi and Vande Vate (1997) commented that their algorithms seemed to have a
reasonably poor worst case performance as indicated by figure 9. In this figure the worst objective function
value over the 1000 problem instances of each size is plotted. We note the relative poor performance of
ordinal and greedy pairing in the same figure. Similar behavior may be observed in the standard deviation
over the 1000 instances as seen in figure 11. This behavior lead Amiouny, Bartholdi and Vande Vate to
conjecture that high variance was an inherent property of the biade balancing problem. The performance of
the number partition based algorithm does not show the same high variability, and seems to disprove the
conjecture of Amiouny, Bartholdi and Vande Vate.

Finally we note that had we solved the embedded number partitioning problems using algorithm
A3 rather than the differencing algorithm, performance would have improved significantly (albeit with

increased cormputation times).

6.0 Conclusions

In this paper we have attempted to demonstrate the usefulness of the differencing algorithm and its
extensions for solving problems with embedded number partitioning problems. We have shown that
number partitioning is easy in that solutions very close to optimal, or indeed optimal can typically be found
with very little computational effort. Further we have demonstrated our approach by developing new
algorithms for two well-known problems, multi-processor scheduling and turbine rotor blade balancing.
The results of these algorithms were impressive, especially in the case of blade balancing where the
algorithms proved better than the best known and as fast as the fastest reasonable alternative. Given that
many problems have been proven NP-complete by reducing them to number partitioning, we suspect that
many other basic combinatorial optimization problems are amenable to approaches similar to those
presented in this paper.

This is the first in a series of two papers on extensions of and uses for the differencing algorithm

for number partitioning. In the second paper we address the problem of “multi-criteria number partitioning”

19

where each element in the set to be partitioned is associated with more than one number. This problem also
has several applications including data splitting in statistical model building, and allocating subjects to trial

groups in designing clinical trials.

Acknowledgements

This work was supported in part by National Science Foundation grant DMI 9809479, and NATO
Collaborative Research Grant CRG-97 1489 for which we are grateful. We also thank Professor Wonjoon
Choi for introducing us to the rotor blade balancing problem, and Dr. Ray Correll for providing insights on

fixed cardinality and subset sum problems.

References

Amiouny, 8.V., Bartholdi, 11, 1.1, and Vande Vate, JH. 1997. Heuristics for Balancing Turbine
Fans. Technical report, Department of Industrial and Systems Engineering, The Georgia
Institute of Technology, Atlanta. (Forthcoming in Operations Research).

Asguello, MF,, Feo, T.A., and Goldschmidt, O. 1996. Randomized methods for the number
partitioning problem.Computers Ops. Res. 23, 103-111.

Chu, C. and Antonio, J. 1999, Approximation algorithms to solve real life multicriteria cutting
stock problems, Ops. Res. 47, 495-508.

Coffman Ir., E.G., Garey, M.R., and Johnson, D.S. 1978. An application of bin-packing to
multiprocessor scheduling. Siam J. Computing. 7, 1-17.

Fathi, Y. and Ginjupalli, K.K. 1993. A mathematical model and a heuristic for the turbine
balancing problem. European Journal of Operations Research. 63, 336-342.

Garey,M.R., and Johnson, D.S. 1979.Computers and intractability a guide to the theory of NP-
completeness. W.H. Freeman and Company, New York,

Graham, R.L. 1969. Bounds on multiprocesing time anomalies. Siam J. Applied Mat. 17, 263-

269.

20

Johnson, D.A., Aragon, CR,, McGeoch, L.A., and Shevon, C. 1991, Optimization by simulated
annealing: an experimental evaluation, part II, graph coloring and number partioning.
Opns. Res. 39, 378-177

Karmarkar, N.R. M., and Karp, R.M. 1982. The differencing method for set partitioning. Report
No. UCB/CSD 82/113, Computer Science Division, University of California, Berkeley.

IaParte, G. and Mercure, H. 1988. Balancing hydraulic turbine runners: a quadratic assignment
problem. European Journal of Operations Research, 333, 378-381.

Mason, A. and Ronnqgvist, M. 1997, Solution methods for the balancing of jet turbines.
Computers & Operations Research, 24(2), 153-167.

Mosevich, . 1986. Balancing hydraulic turbine runners: a discrete combinatorial optimization
problem. European Journal of Operations Research. 26, 202-204,

Snyder, K.T. 1995. Problem space local search approaches for parallel machine scheduling.
Master's thesis #04-95, Department of Industrial and Manufacturing Systems Engineering,
Lehigh University, Bethlehem PA.

Storer, R.H., Flanders, S.W., and Wu, S.D., 1996. Problem space search for number partitioning,

Annals of Operations Research. 10, 465-487.

21

Subject Classifications
Mathematics, combinatorics: extensions of number partitioning heuristics,
Production/scheduling, multiple machine: multiprocessor heuristics.

Manufacturing: rotor blade balancing.

22

Statement of Contribution

AUTHORS: Robert H. Storer

TITLE: Extensions of and Uses for the Differencing Algorithm for Number Partitioning

STATEMENT: While the number partitioning problem is well known, and often used to prove
other problems NP-complete, few if any uses for the problem itself have been put forth. 'We conjecture that
this is because both standard integer programming approaches, and more recently popular local search
heuristics are both essentialiy useless for solving number partitioning problems. It seems that when a
number partitioning problem is found embedded in some other problem, the larger problem is declared NP-
complete, and alternative approaches for solation are sought. What seems to be not widely known is tha£
there are extremely fast and powerful algorithms for solving number partitioning. In this paper we
demonstrate the effectiveness of these surprisingly simple approaches and conclude that number partitioning
is in some sense easy.

The ability to solve number partitioning problems quickly and effectively makes possible
algorithms that directly address number partitioning problems embedded in more complex problems. We
conjecture that such an approach may prove useful in many applications. After discussing extensions to
basic number partitioning (fixed cardinality number partitioning, subset sum problems, and stochastic
number partitioning), we develop algorithms for two well known combinatorial optimization problens.

The first application is to parallel machine {a.k.a multi-processor) scheduling, perhaps one of the
oldest and most widely studied combinatorial optimization problems. A number partitioning based
algorithm is shown to be an attractive alternative to known algorithms when the number of jobs is relatively
large in cormparison to the number of machines.

The second application is to the fairly well studied turbine rotor blade balancing problem. A
number partitioning based heuristic is shown to be far superior to the most recently developed approaches.
We conclude that the number partition based approach is superior to the best known (and fime consuming)
alternative by several orders of magnitude. Further, the run time of the algorithm is as fast as the fastest

reasonable heuristie.

23

Table |. Progress of Cplex 6.5 on a problem
with 100 numbers each with nine digits

Node Best Integer Run Time
Number Solution (secs.)
0 9.04E+08 unkn.

10 1.69E+08 unkn.

30 5.74E+07 unkr.

57 4691137 unkn.

187 2934660 unkn.

222 242690 unkn.

804 203080 unkr.

877 94031 unkn.

2437 7233 unkn.
8778 68141 unkn.
39124 196 unkn.
10000000 196 608.74
20000000 30 1215.38
60000000 8 3662.38
21060000 5 12867.31
36000000 4 22044 .52
56000000 2 34273.94
645349411 0 39161.61

Table Il. Percent Optimal for Algorithm A3. 1000 Hterations, theta=0.04. Table IV. Percent Optimat for algorithm A3. 1000 lterations, theta=0.04.

Probiems generated at randomly Problems have known optimal solution of zero
N N
10 20 30 40 80 80 100 150 200 250 i0 20 30 40 60 BO 100 150 200 250
{609 100 100 100 100 100 100 110G 100 100 2 9g.8 100 100 100 3100 100 100 100 100 100
al 205 100 100 100 100 100 100 10C 100 100 3 991 400 100 100 100 100 100 100 100 100
4 36 100 100 100 100 100 100 100 100 100 4 987 100 00 100 100 100 100 100 108G 100
Digits 5| 0.4 767 100 100 100 100 106 100 100 100 Digits 5| 8.7 861 100 100 100 100 100 100 100 100
6 0 137 982 100 100 100 100 100 100 100 6/ ©9 67.6 97.2 100 100 100 100 100 100 100
7 0 16 418 925 100 100 100 100 100 100 71 986 867 338 842 100 100 100 100 100 100
8 0 o1 58 242 913 100 100 100 100 100 g| 99 864 67 175 85 100 100 100 100 100
9 0 0 1 36 25 773 9% 100 100 100 gl 985 659 35 18 169 653 985 100 100 100
Table . Percent Optimal for Differencing Algorithm Table V. Percent Optimal for Differencing Algorithm. 1000 Rerations.
Problems generated at randomly Problems have known optimal solution of zero
N N
10 20 30 40 B0 B0 100 150 200 250 W0 20 30 40 60 80 100 150 200 250

63.6 974 99.9 100 100 100 100 1CGO 100 100
347 62.3 93.9 $9.8 99.9 100 100 100 100 100
313 11 %25 857 982 100 100 100 100 100
334 2 7.8 253 846 989 99.8 100 100 100
323 0.4 07 2.8 272 672 933 998 100 100
304 07 0 0 3.3 139 4258 953 997 908
30,3 6.7 0 0 03 18 59 527 926 99.2
315 0.3 0 0 01 0 08 7.6 426 847

58 g98.2 100 100 100 100 100 100 100 100

126 72.7 9689 996 100 100 100 100 100 100

1.9 141 59.3 906 985 100 100 100 100 100
03 1.3 11.6 355 $50.2 984 100 100 100 100 Digits

0 01 1.3 56 346 757 956 999 100 100

G 0 01 05 54 165 54 963 998 100

0 G 0 0 07 17 7.9 59 958 998

0 (] 0 0 03 02 1 104 532 874

Digits

W~ G bW
O o~ W

Partition Value

100000000

10000000 g —y

L 4

L

¢
L
L 4
L4
L
L 4

1000000 m

100000

10000 -
m//

IIW’H@‘%;I&

5 — —&

O-“ ¥ t 1 i1 T
0 0.01 0.02 003 004 005 006 007 008 008 0.1

Theta (Perturbation Range)

Figure 1. Results of the tuning experiment showing the effect of
varying theta value on performance for various problem sizes N.

——N=10
—— N=20
—i— N=30
wef— N=40
—# N=60
—&— N=80
~—+—N=100

0.1
0.01 -
0.001
0.0001
1E-05
1E-06
1E-07 -
1E-08 +
1E-09 -
1E-10

Partition Value/Range

.ﬂml.“xm T T - ¥ 4 T

Figure 2. Performance of the differencing algorithm and
algorithm A3 as a function of N. Theta = 0.04*Range

10
1
m . . |
M o Bow & B 2 B 5
it * e
3 001 |
O
=
W 00014 - -~ NI
= « LPT -
S 000017 | . MutiFt | 0,
0.00001 | L&+ NumParj %
&
A
0.000001 _ _ w ;
0 10 20 30 40 50
N/M

Figure 3. Performance of LPT, MULTIFIT, and NP based method on
multi-processor scheduling _u_\o_o_m_sm of various sizes.

Average Elapsed Time

o LPT
0.02 B _/._C_.Eﬂ_._.. A
» NumPar|
0.015 -
0.01 - i . A
A F Y
OOOW F w
]
0 2 § ¥ 8 g = 9 :
20 30 40 50
N/M

Figure 4. Run time comparison of LPT, MULTIFIT, and the
NP based method

100(Value-LB)/LB

« LPT
= Multifit
» NumPar

]
e
e
L
<]
2
i |

0004 . : r I - w
9 10 20 30 40 20
N/M

Figure 5. Performance of four iterations of the NP based algorithm
compared to LPT and MULTIFIT

60

« LPT
= Multifit
,,,, | - s NumPar
4
. &
&
B T A &
4
| s .
B . B &
30 40 50 60
N/M

Figure 6. Run time comparison of four iterations of the NP based
algorithm compared to LPT and MULTIFIT

@
(b)

d=(w;- ih.vmmzmmv
(d)

Weights labeled from heaviest to lightest starting with 1

()]

Figure 7. a) Weight location pattern for the Ordinal Pairing Algorithm.

b) Perpendicular axes of symmetry
¢) Weight pairs symmetric with respect to the X axis

d) Calculation of d, values

Distance

01 S e

0.01

0.001 4 -

2

0.0001

0.00001

0.000001 -~ NumParMean

~g— GrdyMean

»

00000001
—&— OrdniMean

0.0000000%

0.000000001 . _ . - _ _ . ; : .
0 20 40 60 80 100 120 140 160 180 260

Number of Weights

Figure 8. Comparison of the performance of ordinal pairing, greedy pairing, and the number partition
based algorithm for various numbers of weights. Each point is the average performance over 1000
randomly generated problems.

Maximum Distance

1
0.1 -
0.0t 4 o = A
0.001
0.0001 A
0.000001 + - S S S - T
—o— NumParMax 4
—8— GrdyMax
0.0000001 - e e o e ’ - b
~gr— OrdniMax
0.00000001 ; : : : T r T : T
a 20 40 60 80 106G 120 140 160 180 200

Number of Weights

Figure 9. Comparison of worst case performance of ordinal pairing, greedy pairing, and the - number partition
based algorithm for various numbers of weights. Each point is the maximum of the performance measure over 1000
randomly generated problems

Run Time (seconds)

1.8 -

16 1

1.4 -

1.2 -

0.8 4

0.6

0.4

0.2 1

—&— NumParRunTime
—#— GrdyRunTime

—a— OrdniRunTime

0 T T T

20 40 60 80 Hud
Number of Weights

120

140

160 180

200

Figure 10. Comparison of run times of ordinal pairing, greedy pairing, and the number partition
based algorithm for various numbers of weights. Each point is elapsed time to solve all 1000
randomly generated problems

Standard Deviation of Distance

61+

0.01 4

6.001 -

0.0001

i

0.00001

0.060001

1

G.0600001

~g— GrdyStDev

0,00000001 * —a-~ OrdnlStDev

—— NumParStDev

0000000001 : -

T T T 4 T T

60 80 100 120 140 160 180 200
Number of Weights

Figure 11. Comparison of performance variability of ordinal pairing, greedy pairing, and the number pattition
based algorithm for various numbers of weights. Each point is the standard deviation of the performance
measure over 1000 randomly generated problems

