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Abstract

The economic life of an asset is generally defined as the length of time that results in the
minimum annual equivalent cost of owning and operating an asset. Traditionally, this optimal
replacement age is determined under the assumption of age-dependent costs. However, the
current market value of many assets, such as an automobile, is defined by the age, cumulative
utilization (mileage) and condition of the asset, in addition to the specifications and features of
the asset itself. Additionally, operating and maintenance costs are dependent on both the age
and usage of the asset. We present a stochastic dynaric programming formulation in which an
asset is represented by state variables of age, cumulative utilization and condition and generalize
she definition of economic life accordingly. Automobile replacement examples are presented to
illustrate the model.
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1 Introduction

!
The economic life of an asset is generally defined as the length of time that results in the minkmum

annual equivalent cost of owning and operating an asset (Park and Sharp-Bette [21]). If costs
are strictly dependent on the age of the asset and the horizon is infinite, then the economic life is
stationary and the optimal policy to continually replace the asset at its economic life. Preinreich [22]
may have been the first to use the term economic life when referring to this chain of replacements.

The application of models which assume strictly age-dependent costs is limited as replacements
are generally motivated by deterioration and obsolescence of the current asset, commonly referred
to as a defender. Deterioration is an intrinsic effect defined by asset wear that includes the effect
of both asset age and cumulative utilization. Obsolescence is an extrinsic effect caused by improve-
ments in the technology of newer assets available for purchase, generally referred to as challengers.
Modeling of technological change or obsolescence generally requires time variant costs (see, for
example, Alchian [1], Christer [9], Grinyer {14] and Jones and Tanchoco {17}), and thus, stationary

replacement cycles may not exist.
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Terborg [26] was the first to consider obsolescence and technological change in replacement
decisions. However, it was not until the work of Bellman [5] and the use of dynamic programming
that assumptions of repeatability and an infinite horizon were removed. Since then, a variety of
finite and infinite horizon generalized replacement models based on dymamic programming have
been developed, including Dreyfus [11], Oakford et al. [20], and Bean et al. [3] [4], among others.

Research has also examined relaxing deterministic assumptions common in replacement prob-
lems. Derman {10] introduced the replacement problem under uncertain deterioration, modeling the
problem as a Markov process. Recently, Hopp and Nair [16] presented a model with both Marko-
vian deterioration and technological change. Various techniques have also been used to model risky
cash flows (Lohmann [19], Brown [7] and Fleischer [13], among others).

This paper is motivated by the traditional definition of economic life which refers to the optimal
age at which an asset should be replaced. There exist numerous examples in which the costs
incurred over the life of an asset and the salvage value of the asset over time are influenced by
factors other that age. For example, automobile salvage values are generally defined by the age,
cumulative utilization (mileage) and some measure of the condition of the vehicle, in addition to
characteristics of the asset itself (engine type, air conditioning, etc.}. While Hartman [15] proposed
a model including age and cumulative utilization, this paper generalizes the definition of economic
life to include the three variables of age, cumulative utilization and asset condition through the
use of stochastic dynamic programming. A general model is presented in which an asset may be
kept or replaced at the end of each period, unless it reaches its maximum physical age, maximum
cumulative utilization or maximum state of deterioration (condition), at which time it must be
replaced. After this keep or replace decision is made, the asset is utilized at some level according
to a probability. Additionally, the asset deteriorates in condition according to a probability. These
probabilistic changes in asset utilization and condition may be independent of, or dependent on,
each other. Thus, this model trests the resulting asset state as uncertain as both cumulative
utilization and condition are stochastic.

The stochastic dynamic program which generalizes economic life is defined in the following
section. Section 3 presents various automobile replacement problems to illustrate the model and
describe the meaning of economic life in this context. Conclusions and directions for future research

are given in Section 4.

2 Stochastic Dynamic Programming Solution

2.1 Problem Statement

At time zero, an asset is owned which may be kept or replaced by a new asset. If replaced, a
salvage value, dependent on the age, cumulative utilization and condition of the asset, is received
for the old asset and a purchase cost is paid for the new asset. The retained or acquired asset is
then utilized at some probabilistic level in the following period. At the end of the period, the asset
has aged one period, accumulated utilization according to the probabilistic level and degraded in



condition according to some probability. The asset incurs operating and maintenance costs which
are dependent on the age, utilization and condition of the asset during the period. At the end of
the period, this decision process repeats in that the asset may be kept or replaced.

These decisions occur at the end of each period over the finite decision horizon. The only devia-
tion from this analysis is that if an asset reaches its maximum limit in age, cumulative utilization or
condition, it must be replaced by a new asset. The optimal decision is the sequence of keep [replace
decisions over the finite horizon such that the net present value of all costs less salvage values is
minimized.

2.2 Assumptions

The periodic usage of an asset, which defines its cumulative utilization at the end of each period,
may undergo one of m scenarios in each period. That is, the utilization of an asset may be at any
level 4 = uy, s, . .., Um each period according to a specified probability. These levels correspond
to some level of output, such as miles traveled or parts produced. For example, a given period may
have five utilization scenarios, where a vehicle is to be utilized at either uy = 2,500, uy = 5,000,
usg = 7,500, 1g =10,000 or us =12,500 miles in a period, each with a given probability. It is assumed
that the difference between these levels (2,500 miles) is constant throughout the horizon. This is
required to maintain a lattice structure in asset utilization which reduces the growth of the state
space in the dynamic programming model. That is, an asset that undergoes 2,500 miles of travel
followed by 5,000 in the next period results in an equivalent cumulative utilization state as the
same asset that undergoes 5,000 in the first period followed by 2,500 miles of travel in the ensuing
period. Additionally, the measure of output can be mapped to a unit of cumulative utilization
such that one unit is equivalent to 2,500 miles in this example. Thus, in this example, u3 = 1 and
ug = 5.

A similar lattice structure is assumed to hold with condition. Here, conditions of excellent,
good, fair and poor may be represented by the levels £ = 0, 1,...D, where D is three. As with
cumulative utilization, it foliows that the resulting condition state for moving from a condition of
excellent to fair in one period and remaining fair for the second period is equivalent to the resulting
condition state for moving from excellent to good and good to fair in successive periods.

The final asset state variable of age is assumed to be tracked in periods, which are generally
years. This is straightforward in that an asset ages one period in each period.

With these lattice structures, the number of new possible states that can be reached in the
ensuing period is reduced drastically. Thus, the stochastic dynamic program can be solved quickly,
despite having three state variables.

2.3 Notation

An asset is defined by its age 4, cumulative utilization j and current condition k. At the end of
each period ¢ = 0,1,...,7 - 1, where T is the horizon, the asset may be kept or replaced with
a new asset. If at any time over the horizon an asset reaches its maximum physical age limit N,
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maximum cumulative utilization level M or maximum degraded condition D, it must be replaced.
As this is a finite horizon problem, the asset is sold for its salvage value at time T'.

If replaced, the asset is sold for its salvage value S¢(4,4,k) and a new asset is purchased at
price P;. An asset purchased new is assumed to have initial states ¢ = j = k = 0 at the beginning
of the period of the purchase. If kept, the asset is utilized for the period at level u for the cost
Cy(u, i, §, k) which is assumed to occur at the end of the period. The asset may be used at any level
W= Uy, U2, . .-, Um i each period according o the probability p.{u). Additionally, the condition of
an asset k, may remain at state k or worsen to state k', k' > k, in a given period according the
probability p:(k'|k,u), as it is also dependent on the periodic usage. (Note that p(u) - pe(k'|k, u)
defines the joint distribution of the periodic usage and change in condition in a given period.
Independent probability distributions may also be utilized.)

Purchases and sales of assets are assumed to occur at the beginning of the peridd while operating
and maintenance costs occur st the end of the period. All costs are discounted over time, with
o representing the periodic discount factor. Generally, this would equal 1/(1 -+ 7} where r is the
periodic interest rate.

2.4 Formulation

The dynamic programming solution determines the sequence of decisions that minimizes the ex-
pected net present value of costs when starting with an asset defined by state (,7,k) at time
zero and making optimal decisions through time T". This is accomplished by solving the recursion
defined by Equations (1) and (2) backwards (Dreyfus and Law [12]}.

The boundary condition assigned to period T represents the sale of the asset after the final
period, as in (1).

fT(iijﬁk) = —ST(i:jak) (1)
For periods t = 0,1,...,T — 1, the recursion equation is given in (2).
fiisds k) = min { Keep:  aYim,, Yobe 2e(wp(Kk, 0) [Co(u 4,5, ) + fora (B4 1,5 +u, K], }
AR R.Gpl&Ce: Pt - St("‘:sj: k) + zm_n:u; Eg:opt(ﬂ)m(qu:u) [Ct(u: 01 07 0) + ft+1(1;ﬂ: k’)]
(2)

The solution of Equations (1) and (2) determines whether it is optimal to keep or replace the asset
for each possible asset state (4,7, k) at each time period ¢ over the horizon. The optimal decisions
minimize expected purchase and O&M costs less expected salvage values which are discounted to
time zero.

While the solution of the dynamic program provides keep and replace decisions for each possible
asset state over the horizon, we can also determine optimal policies under the assumption that costs
are not dependent on . Bellman (5] showed that the economic life of an asset could be determined
by solving a recursion for each feasible asset age and selecting the minimum. Thus, the optimal
policy was to keep the asset until it reaches its economic life and then replace it with an identical
asset. Here, the policy is defined by age, cumulative utilization and condition, and the policy is no
longer a point (age), but rather a surface. That is, for a stationary problem, a new asset is to be
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kept until it reaches a combination of (i, 7, k) that defines the economic life. This is illustrated in
the following section where the model is applied to several vehicle replacement problems.

3 An Application in Vehicle Replacement

This section presents a number of different examples in the context of vehicle replacement. The
automobile was chosen for these examples as data is readily available from a number of sources. For
instance, salvage value data based on model specifications, age, mileage and condition is available
frorm sources such as Kelley Blue Book [6] and Edmunds [23]. Operating and maintenance cost data
is also readily available for automobiles from sources such as Automotive Fleet (2] and Consumer
Reports [18]. The purchase price of current automobiles can be determined from current advertise-
ments and probable inflation rates through time may be interpreted from statistical databases (i.e.
Standard and Poor’s Statistical Service [25]).

For this example, it is assumed that there are five levels of utilization possible in each period,
namely uy =9,000 through us =15,000 miles incremented by 1,500 miles. These levels are designated
as uy = 6 throngh us = 10, respectively, such that one level of cumulative utilization maps to 1,500
miles. Additionally, there are four levels of condition for the automobile, namely “excellent”,
“eood”, “fair” and “poor.” These are designated levels k = 0 through k = 3, respectively. It is
assumed that the asset must be replaced if it reaches the age of 12 years (N = 12), 150,000 miles
(M = 100) or the condition of poor (D = 3).

Al examples were solved using the Visual Basic macro language in Microsoft Excel on a personal
computer with a 300 Mhz processor and 128 MB of RAM. For the time-invariant cost examples, the
average solution time was 36 seconds while it was 42 seconds for the time-variant cost examples.

3.1 Time-Invariant Cost Examples

Initially, we solve various problems under the assumption of time-invariant data. Although this is
unrealistic as it does not allow for the modeling of technological change or inflation, it determines
a stationary replacement policy which may be useful for decision making. Also, it allows for the
generalization of the definition of economic life.

From the data sources listed above, we make the following assumptions about costs. The
purchase price of the sedan being evaluated is $16,800 for a new asset. The O&M costs are
assumed to be influenced by age, current utilization, cumulative utilization and the condition of
the automobile. The operating costs are $0.20 per mile for a new car, increasing 1% every 1,500
miles driven. Maintenance costs for a new car are $100, rising $200 for each year of use. Maintenance
costs are also expected to increase drastically by condition, in that &k = 1 adds $1000 and & = 2
adds $4000. Finally, age based costs such as insurance are estimated at $800 for a new car, rising
$100 per year.

The salvage values are determined from the Kelley Blue Book {6}, with the value determined for
each feasible combination of age, cumulative mileage and condition. Table 1 provides an example



of the data utilized. The data shown is for the 1996 sedan which is assumed to be the salvage
value for a three-year old asset. Similar data is available for older models which may be used to
approximate salvage values based on age. Interpolation was used to estimate salvage values for
other possible levels of cumulative utilization.

Table 1: Salvage value estimates for three-year old vehicle based on cumulative mileage and condi-

tion.
Cumulative Mileage | Excellent | Good | Fair | Poor
27000 $7425 | $6900 | $6010 | $4755
31500 $7275 | $6750 | $5860 | $4605
36000 $7175 | $6650 | $5760 | $4505
40500 $7050 | $6525 | $5635 | $4380
45000 $6850 | $6325 | $5435 | $4180

The probability of an asset worsening in condition over time is given in Table 2. For example, it
iz assumed that a new car will stay in “excellent” condition with probability 0.6 while there is a 0.3
probability that it will degrade to a condition of “good.” It is assumed that if an asset reaches the
state of “poor” that it must be replaced. For these examples, it was assumed that the utilization
level probabilities and the probabilities of moving from one condition to another were independent.

Table 2: Probabilities of moving from condition state k to &' in one period.

(k') Excellent (k' = 0) | Good (k' = 1) | Fair (k' =2) | Poor (k' =3)
Excellent (k = 0) 0.6 0.3 0.09 0.01
Good (k =1) 0 0.8 0.18 (.02
Fair (k= 2) 0 0.9 0.1
Poor (k = 3) 0 0 0 1

With this cost and parameter data, 10 different examples differing according to the probabilities
assigned to periodic usage levels are solved using the stochastic dynamic program. This includes
five deterministic utilization level examples. These deterministic utilization scenarios are included
to illustrate the different solutions that may arise under different utilization scenarios and different
stochastic/deterministic assumptions. The probability assigned to each possible utilization level
for each example is given in Table 3. This table also provides the optimal keep or replace decision
for an asset defined with initial state (4, 7, k) = (5,42, 2) at time zero. This corresponds to a vehicle
of age 5 with 63,000 miles in fair condition. The net present value (NPV) cost of making optimal
decisions over a 50-year horizon is also provided.

As the solutions in the table show, the optimal time zero decision is highly dependent on the



Table 3: Various solutions with initial asset state {¢,7,k) = (5,42,2) under time-invariant eco-

nomies.
Example | p(uy) | p(uz) | p(us) | p(us) | plus) | NPV Cost | Time Zero Decision
1 1 0 0 0 0 $133,647.32 Keep
2 0 1 0 0 0 | $138,410.08 Keep
3 0 0 1 0 0 $143,369.98 Keep
4 0. 0 0 1 0 | $147,736.14 Replace
5 0 0 0 0 1 $152,850.22 Replace
6 0.4 0.2 0.2 0.1 0.1 | $139,847.20 Keep
7 0.2 0.4 0.2 0.1 0.1 | $140,806.38 . Keep
8 0.1 0.2 0.4 0.2 0.1 | $143,223.73 Keep
9 0.1 0.1 0.2 0.4 0.2 | $145,546.01 Replace
10 0.1 01 | 0.2 0.2 0.4 | $146,550.93 Replace

expected utilization pattern of the asset. When it is more probable that the asset is to be utilized
at a high rate, the decision is more likely to replace the five-year old asset at time zero.

As these examples have time-invariant costs, solutions for all possible states can be determined
from one solution of the dynamic program. If we examine the solution for each possible asset state
at time zero, they provide the steady state solution for the infinite horizon problem, assuming we
have selected a finite horizon that is sufficiently long such that the economic life of an asset can be
determined. {The choice of a finite horizon to approximate an infinite horizon is beyond the scope
of this article. See, among others, Bean et al. [3], Chand and Sethi [8], Sethi and Chand {24] for
inore discussion on this subject.) For problems in which costs are strictly defined by the age of
the asset, this stationary replacement cycle defines the economic life of an asset. Here, the asset is
defined by its age, cumulative utilization and condition. Thus, the economic life is now a function
of these three parameters and is no longer a point, but rather a surface.

Consider Example 8 from Table 3. Figure 3.1 ilustrates the keep and replace decisions for each
of the possible asset states. Again, these are the optimal decisions in any time period as costs are
not dependent on time. The graph illustrates all states in which it is optimal to keep the asset in
gray and all states in which it is optimal to replace an asset in black.

Examining the figure more closely, the black states can be used to define the economic life of
this asset in this context. For an asset it excellent condition (k = 0}, an asset should be kept if it is
of age 6 or younger, regardless of cumulative utilization. If the asset is age 7, it should be retained
if its cumulative utilization is less than or equal to 55 and if the age is 8, it should be kept if its
cumulative utilization is less than or equal to 50. This is seem more explicitly in Figure 3.2 which
shows just the k = 0 states of the three dimensional figure.

Examining decisions with k = 1, the asset should be kept if it is age 6 or less, but only retained
at age 7 if the cumulative utilization is less than 52. For the case where k = 2, the asset should be
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Figure 3.1: Plotted decisions for Example 8 of time invariant economics examples.

replaced if it is of age 5 with cumulative utilization greater than 42, age 6 if utilization is greater
than 40 and age 7 and greater {regardless of usage). These states in which the asset should be
replaced define the economic life of the asset in terms of age, cumulstive utilization and condition.

The actual surface defined in Figure 3.1 is a function of the estimated costs and salvage values.
As shown in this example, the transition from keep decisions to replace decisions is smooth, which is
also a function of the costs. If operating and maintenance costs, salvage values, and their summation
move consistently, then there is a smooth transition from keep to replace decisions.

3.2 Time-Variant Cost Examples

While the time-invariant economics examples are good for determining a stationary economic life for
an asset, they are not realistic in that inflation must be ignored and the modeling of technological
change with costs that change over time cannot be included. In the following examples (Table 4),
the above examples are solved again with time-variant data.

The purchase price of the sedan is assumed to increase by 5 percent each period, which in turn
raises the ensuing salvage values. Also, O&M costs are assumed to change in two manners. First,
the fixed charge of $900 experienced by all assets is assumed to decrease by 4 percent each period
to signify a technological improvement in assets. Second, all O&M costs are subject to a 3 percent
rate of inflation. Under these new cost assumptions, the results to sitnilar examples are given in
Table 4 for the 50-year horizon problem. Specific time zero decisions are provided for an initial
asset defined by state (4, 4, k) = (4, 32,2) which corresponds to a four-year old vehicle with 48,000
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Figure 3.2: Plotted decistons for Example 8 of time invariant economics examples with & = 0.

miles in fair condition.

Ag shown in Table 4, the optimal time zero decisions are highly dependent on the expected
utilization of the asset, as with the time invariant economics examples. If it Is only expected that
the asset will be used for 9,500 or 12,000 miles in year one, the optimal decision is to keep the asset
while the optimal decision is to replace it for any greater expected mileage. When probabilities
are assigned to all possible utilization levels, as are given in Examples 6 through 10 in Table 4, the
optimal decision is to replace the initial asset at time gero.

For these examples, there is no stationary replacement policy over time. However, we can still
develop a plot of state dependent keep and replace decisions for each time period. Thus, for each
time period, this surface represents the economic life of the asset, but only in the given time period.
The optimal time zero decisions for Example 8 are plotted in Figure 3.3.

Examining this figure, it is optimal to keep an asset of age 3 or less, regardless of cumulative
utilization or condition. If the asset condition is 0 or 1, a 4-year old asset is also retained. For an
asset in excellent condition, a replacement occurs at age 5 if cumulative utilization is greater than
46 and age 6 if it is greater than 44. For an asset is good condition, a replacement occurs at age b
if cunulative utilization is greater than 44 and age 6 if it is greater than 42. In both of these cases,
an asset of age 7 or higher is replaced. Finally, for an asset in fair condition, the asset is replaced
if it has an age of 3 or 4 and cumulative utilization greater than 31 or its age is greater than 4.
Again, these decisions only hold for the first period as the economic life may shift over time due
to technological changes and/or inflation. Thus, Figure 3.3 must be replicated for each period to



Table 4: Various solutions with initial asset state (4,7, &) = (4, 32, 2) under time-variant economics.

Example | p{us) | plus) | plus) | p(ug) | plus) | NPV Cost | Time Zero Decision
1 1 0 0 0 0 $230,430.20 Keep
2 0 1 0 0 0 | $237,419.74 Keep
3 0 0 1 0 0 $244,837.47 Replace
4 0. 0 0 1 0 | $250,801.44 Replace
5 0 0 0 0 1 $258,458.46 Replace
6 04 0.2 0.2 0.1 0.1 | $239,496.24 Replace
7 0.2 0.4 0.2 0.1 0.1 | $240,904.74 Replace
8 01 | 02 | 04 | 02 | 01 |$244,432.63 Replace
9 0.1 0.1 0.2 0.4 0.2 | $247,720.19 Replace
10 0.1 0.1 0.2 0.2 0.4 | $249,239.83 Replace

make decisions over time. This can be accomplished by solving the dynamic program for various
initial asset states.

4 Conclusions and Directions for Future Research

This paper presents a stochastic dynamic programming formulation which generalizes the definition
of economic life to include parameters of age, cumulative utilization and condition. While the
traditional definition of economic life is the age at which an asset should be replaced to minimize
asset operating and ownership costs over an infinite horizon, the solution to the dynamic program
defines the optimal keep or replace decision for each feasible asset state defined by age, cumulative
utilization and condition. Examples illustrate that the dynamic program can be solved quickly
despite the use of three state variables over a finite horizon.

As this paper has included utilization and condition parameters in addition to age as variables to
determine optimal asset life, it highlights a very important line of research: combined replacement
and utilization analysis. Traditional replacement analysis literature assumes some level of utilization
over time and therefore, decisions can be made based on the age of the asset. However, due to the
uncertainty associated with operations, these expected utilization patterns may not be realized,
thus negating expecting utilization scenarios and the resulting replacement decisions. To minimize
both ownership (purchase and salvage) and operating (operating and maintenance) costs, some
measure of asset utilization must be included in the analysis. With multiple assets, the utilization
of the assets may also be optimized.
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Figure 3.3: Plotted decisions for Example 8 of time variant economics examples.
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