Improving Schedule Robustness via
Stochastic Analysis and Dynamic Adaptation

Erhan Kutanoglu
S. David Wu
Lehigh University

Report No. 98T-001

Improving Schedule Robustness via Stochastic Analysis and
Dynamic Adaptation

by

Erhan Kutanoglu and S. David Wu

Manufacturing Logistics Institute
Department of Industrial and Manufacturing Systems
Engineering

Lehigh University

Abstract

We study methods that improve scheduling robustness under uncertain disturbances and
dynamic shop conditions. A new method is proposed based on the notion of preprocess-
first-schedule-later by Wu et al. [19]. Preprocessing starts at the beginning of the planning
period where we use a Lagrangean Relaxation of the scheduling model to form network-
structured job subproblems. For each job subproblem we introduce stochastic constraints
which capture a priori information in the form of processing time uncertainty. This
stochastic information comes at minimal computational expenses since the subproblems
retain their special network structure. Using a subgradient search algorithm, we itera-
tively improve the lower and upper bounds of the scheduling instance. The preprocessing
produces a partially resolved sequence or a Lagrangean Ranking. Actual schedule genera-
tion is performed dynamically over time using theLagrangean ranking. Intensive compu-
tational experiments show that the proposed preprocessing significantly outperforms its
deterministic counterparts without extra computing burden, achieves robust performance
under highly uncertain conditions, and could be used to improve the quality of dynamic
dispatching.

1 Introduction

We study scheduling robustness in a production environment where frequent changes
in shop conditions are to be expected. These uncertain events complicate the role of
production scheduling since two conflicting goals must be reconciled: first, the system
must perform at a globally satisfactory level for efficient resource usages, and second, the
system must allow sufficient local flexibility for changes and adjustments.

To achieve the first goal of high global performance a well-planned a priori schedule is
required. In general, static scheduling techniques are used to optimize the operations
schedule at the beginning of a planning horizon. This approach typically generates a
detailed schedule assuming perfect information about the system’s current and future
states. However, unexpected disturbances make this pre-planned schedule very difficult,
if not impossible, to follow. Moreover, overall system performance deteriorates when
updates are made for the system changes.

To achieve the second goal of local flexibility, dynamic dispatching policies are typically
used which make decisions as needed throughout the course of production. This dynamic
scheduling approach typically uses myopic priority indices and greedy heuristics which
may lead to poor global performance. However, its inherent flexibility and ability to
utilize up-to-date local information makes dynamic scheduling a practical tool in uncertain
environments.

In this study, we propose to address scheduling robustness by a method that reconciles
the benefits of static and dynamic scheduling. We shift the focus of ¢ priori scheduling to
identifying decisions that are critical to global performance under the presence of random
disturbances. These decisions are optimized using a priori stochastic information, which
in turn preprocess, or partially solve the scheduling problem. The actual schedule unfolds
over time using dynamic scheduling.

Treating scheduling problems in uncertain environments did not attract much attention
in the literature until the early 80s. One approach is to reschedule all the jobs from
scratch every time an uncertain event occurs [13, 22, 5, 1, 20, 21]. Researchers also
proposed schedule repair methods that compute a temporary schedule after each machine
breakdown with the attempt of bringing the system back to schedule in a finite amount of
time. The “match-up scheduling” method proposed by Bean et al. [2] and Gallégo [7, 8]
belongs to this category.

Tnstead of repairing a pre-specified schedule, Mehta and Uzsoy {10] propose a method
that insert idle times into the schedule in anticipation of schedule disruptions. Another
approach is to split the scheduling activity into planning and dispatching stages. The plan-
ning stage computes the pricing or resource usage costs using global information, while the

dispatching phase makes use of the resource pricing and up-to-date shop conditions and
uncertainties. This approach is both general and effective as demonstrated by Roundy,
et al. [17], and Morton et al. [11, 12]. A similar approach by Wu et al. [19] partitions
the operations into an ordered sequence of subsets in the planning phase. This identi-
fies and resolves the supposedly critical scheduling decisions through a graph-theoretic
preprocessing. The second stage completes the schedule dynamically using a dispatching
heuristic.

The approach described in this paper is in parallel to the idea of preprocessing scheduling
problems using a priori information while dynarmically generating the actual schedule.

2 Problem Statement and Analysis

2.1 The Mathematical Model

We consider the classical job-shop scheduling model where a set of jobs is to be completed
on multiple machines. Each job consists of a series of operations that represent the
production steps of the job. Due to processing requirements the operations of a job are
subject to precedence constraints. Each production step (an operation) requires a specific
machine and once the processing of an operation starts it can not be pre-empted by any
other operations. The collection of operation processing times and their corresponding
machine requirements represent the job routing. Each machine can only process one
operation at a time. This requirement defines the machine capacity constrainis. Each job
has a due-date and a weight, and the objective is to find a schedule which minimizes the
total weighted tardiness.

We first state an integer programming formulation of the job-shop scheduling problem
due to Pritsker et al. [16]. The notation is summarized in Table 1. The decision variable
of this model (X;;;) is defined as follows:

o 1 if operation 7 of job 7 has started by time ¢, (1)
1 0 otherwise.
The JSP then can be formulated as follows (We set the variables with out-of-range indices
to 0}):
(JSP)

mmZWz [Z (1 - Xi,n;,t)} (2)

i >diPi,ng

2

Table 1: Notation used throughout the paper

i Job index, ¢ = 1,..., N where N is number of jobs

j Operation index, j = 1,...,n; where n; is number of operations of job i

k Machine index, k = 1,..., M where M is number of machines

t Time index, t = 1,...,T where T is number of time periods in planning horizon
W; Weight or tardiness penalty of job ¢

d; Due date of job ¢

C; Completion time of job 1

T. Tardiness of job %, max {0, C; — d;}

mi; Machine required for operation j of job 4
pi; Processing time of operation j of job ¢
Cy Completion time of operation j of job 1
Sy Start time of operation j of job i

sb Xijps1 =2 Xige V6,51 <T (3)

Xiss < Xijetpopijrr Vhi > 11 (4)

Y. Kige = Xigaepy) < 1L kit (5)
1,51 =k ‘

Xije € {0, 1} , Vi, 7, (6)

The first set of constraints (3) makes sure that once an operation is started, it remains
so in all subsequent time periods. This is due to the definition of X,; and the non-
preemption requirernent. Constraints (4) state that an operation cannot start until all
its predecessors are completed. Finally, the machine capacity constraints (5) state that
at most one job can be processed on a particular machine in 2 given time period. The
objective function (2) is the total weighted tardiness derived from the fact that a cost of
W, is incurred for each time period after d; during which job i has not been completed.

The objective function can be rewritten as follows:

ZW% { > (1- Xi,n;,t):l = Z Wi(T —~ di + pip,) -+ Z z 21; —wipXey (7)

t>di~pin;

where
Wy = W, if j = n; and t > d;,
9T 0 otherwise.

(8)

Since the first term in the objective function (7) is a constant we represent it as A = Y, A;
where A; = Wi(T ~ di + i,)-

In solving scheduling problems we know that the processing time information is among
the most critical input. This is particularly true when a regular performance measure
such as (2) is used. Almost all successful dispatching heuristics rely heavily on processing
time information. In our IP formulation, both objective function and constraints are de-
fined based on processing times. Any change in processing times will affect the solution
and its corresponding weighted tardiness value. Since processing times are typically un-
certain in practice, best estimates or expected values are used in deterministic scheduling
models. This common treatment of processing time information ignores the effects of
processing time variations, which could clearly lead to poor quality schedules in the face
of uncertainty. We will address these important issues in the following sections.

2.2 The Proposed Scheduling Scheme and Broader Managerial
Insights

Before stating the scheduling scheme, we first make two observations from the industry
scheduling environments: (1) at the time of planning a schedule there is typically some
information available concerning future state of the shop, and (2) there is no need for
a completely specified schedule for all jobs over the entire planning horizon. Using the
available information, a seasoned scheduler can typically pinpoint a few critical decisions
to overall schedule efficiency, and focus his/her attention on these decisions. Detailed
scheduling decisions are often delayed till later during actual production when up-to-date
information is available with much higher certainty.

Motivated by this practical paradigm of decision making we propose a few adaptations
to the TP model that changes the role it plays in the scheduling process. Instead of using
the (JSP) model to generate detailed static schedules, we use it to analyze the criticality
of scheduling decisions based on a priori information. Specifically, we modify (JSP)
to include chance constraints, which captures the effects of processing time variations.
After a Lagrangean relaxation of the machine capacity constraints, the chance-constrained
program has a special network structure in its subproblems. The solution to this relaxed
problem is a partially solved scheduling problem (a lower bound) since many resource
conflicts are left unresolved. To improve the lower bound we start iterating on the relaxed
problem using a subgradient search algorithm. The algorithm stops when the partial
schedule contains sufficient details to be released to the shop for planning purposes (or
when the computing budget runs out). We leave the remainder of the scheduling decisions
to system dynamics, i.e., we resolve the remaining resource conflicts as needed during the
actual implementation of the schedule.

The proposed scheduling scheme can be considered a version of the preprocess-first-

schedule-later (PFSL) scheme proposed by Wu et al. {19]. The preprocessing is performed
by the Lagrangean-relaxed, chance-constrained mathematical program, while the detailed

4

scheduling is carried out by dynamic dispatching. The PFSL scheme is based on the fol-
lowing conjecture:

Conjecture 1: The robustness of static scheduling model such as (JSP) can be signif-
icantly improved by preprocessing the problem instance using a priori analysis of
its structure, while making detailed scheduling decisions dynamically. The extent
of the improvement depends on the underlying statistical distribution and the level
of uncertainty.

This conjecture has been strongly supported by the experiments in {19] where they use
a branch and bound algorithm for the a priori analysis and a dynamic dispatching rule
for detailed scheduling. After testing under Uniform and Exponentially distributed vari-
ations, they show that the marginal value of a priori analysis deteriorates as the level of
uncertainty increases. Not surprisingly, their preprocessing scheme uses only the structure
of the deterministic model, i.e. no stochastic information is used.

Knowing that a priori analysis of problem structure may improve scheduling robustness,
the goal of the current study is to improve scheduling robustness using a priori stochastic
information. A question of general managerial interest is “what are the insights one could
extract from problem structure in the context of a priori stochastic information, and
how do they improve scheduling robustness under uncertainty.” To address this broader
research question, we state three main conjectures which our proposed scheme builds on.
These conjectures will be thoroughly tested in the computational experiments.

Conjecture 2: Scheduling robustness can be significantly improved by incorporating not
only the mean but also the second moment of the stochastic information. Moreover,
the value of this information increases as the level of uncertainty increases.

Conjecture 3: The robustness of dynamic dispatching can be significantly improved by
a priori static analysis using stochastic information. The extent of the improvement
varies by problem instances, the type of underlying distributions, and the level of
uncertainty.

Conjecture 4: The marginal benefit of a priori stochastic analysis (to the PFSL scheme)
increases as the level of uncertainty increases, and its effect varies by the type of
underlying distribution.

Testing these conjectures provides support (and counter cases) for the belief that one could
reconcile the benefits of static analysis and dynamic adaptation, while making effective
use of a priori stochastic information.

3 Solution Methodology

We will start constructing our solution methodology applying Lagrangean relaxation to
the JSP formulation as suggested by [17]. We first relax machine capacity constraints (5),
and decomposed the problem into job-level subproblems with integrality property. We
then employ chance-constrained programming at the subproblem level which incorporates
a priori stochastic information.

3.1 Lagrangean Relaxation

When we dualize the machine capacity constraints (5) of JSP with nonnegative La-
grangean multipliers A, Vk, ¢ we obtain the following Lagrangean Relaxation problem
(LR):

(LR»)
min Dy A+ > 3 (At = A pepy — Wigt) Xige — S5 Ak (9)
5 PR PR

st Xijerr =2 Xige V6, 5,t<T (10)
Xige S Xijetpepy V67 > 1,1 (11)
Xige € {0,1} Vi, 5.t {12)

We decompose LR, into independent job-level subproblems as follows:

'U(LR,\) = ZU(LR)\,i) = ZZ /\Ict (13)

i kot

where v(P) denotes the value of optimal solution of problem P, and
U(LRAJ) = min A% -+ Z Z(Amij;t -)\mij Atpiy T wijt)Xm (34)
it

s.b Xigpnr = X Vit <T (15)
Xiajft 5 Xi:j"”lvtmpi,jwl Vj > 1?t (16)
Xige € {0,1} Vit (17)

The subproblems satisfy integrality property, in fact they are dual of a specially structured
maximum flow network problem [17]. We can therefore relax the binary constraints (17)
as below: :

6

Xy = 0, Vi, ¢t (19)

Repeated application of first set of constraints (15) leads us to the following constraints
instead of relaxed constraints (18), (19):

Xir <1, V) (20)

Xiﬂ't P D} Vjai l (2}‘)

Since the dual to (LR, ;) is & max-flow problem on a network, we may use special dual
network flow algorithms to solve each job-level subproblem.

3.2 Chance-Constrained Programming

We will now construct a chance-constrained model for each job-level subproblem by first
accepting the fact that the processing times are uncertain. We assume that we have
information about the type of processing time distribution, and its mean and variance.
This information is typically easy to estimate in a real system using historic data.

Chance-constrained programming was first proposed by Charnes and Cooper [4]. In this
approach, we use chance-constraints to represent processing time variation instead of
using deterministic constraints that assume expected processing times. For example, if
we want to represent a constraint, say z < b (b is not perfectly known), that holds with
a probability of at least §, the corresponding chance-constraint is Plz < b] > § where
P{] is probability function for b. In job-level subproblems, precedence constraints are the
only constraints that are affected by processing time uncertainty. For a specific job i, the
precedence constraints are as follows:

X’iﬁ g Xi,j“l,tﬁ-pi)j_p Vj > 1,t . (22)

Since processing times p;; occur in indices in (22), it is difficult to convert these constraints
as they are. However, we can obtain start and completion times (Sj; and Cy) of each
operation as follows:

Sy =T — ZXijt +1land Oy =T — ZXijt + Dij (23)
t t

Hence we can rewrite the precedence constraints (22) as follows:
033 -—<— S‘i;j'f'l - 1: Vj < T, (24)
or equivalently

ZX’&'J'L‘ - Z Xijarp 2 Pigy VI <1y (25)
£ t

7

We can now incorporate probabilistic processing times as follows: Suppose we want a con-
fidence level of B;; for each operation j of job ¢ to satisfy its stated precedence constraint
(25), then we have the following chance constraints:

P {}; Xijp — Y Xijyrp = P@j] > Bii, Vi < ny (26)
4

Further, instead of chance constraints (26), we substitute the following deterministic and
equivalent constraints:

S Xijp— D Xigare = Py Vi <my (27)
¢ t
where P is the smallest number satisfying
Plpy < Pyl 2 Biy or F[Py] 2 B (28)

where F[] is cumulative distribution function. ‘Specifically, if the processing time py is
known to be Uniformly distributed between a,;; and by, then the corresponding adjusted
processing time Py = ay;+ B;;(bij — ayz). If py is predicted to be Normally distributed with
N(pi;, 02), then Py = pij + K, 05 where Kpg,, is standard Normal value corresponding

We can now convert the chance-constraint equivalents into their original form with the
adjusted processing times included in indices. This results in a job-level subproblem (re-
ferred as LRC); for LR with chance- constraints) that minimizes the subproblem objective
defined in (14) subject to chance-constrained precedence, non-preemption constraints and
bound constraints for the decision variables. The job level subproblem with chance con-
straints for job 7 can be stated as follows:

U(LRC)M‘) = min A; + Z Z(Amij,g -)‘mij,t-i-Pij - wm)Xijt (29)
it . ‘

st Xije < Xij-1,4-py V5 > 1,1 (30)
and constraints (15}, (20), (21).

The revised Lagrangean objective is:

’U(LRCA) s z ’U(LRC,\,,;) - ZZ /\kt (31)
Bkt

2

We can still solve each job-level subproblem using dual network algorithm because the
structure of the current model is the same as the deterministic version. We use a sub-
gradient search algorithm for the Lagrangean relaxation problem with chance constraints.

Our subgradient optimization starts with an initial value for the multipliers A = 0. Then
the algorithm generates a sequence {A"} over the iterations r by the rule

At = max{0, A}, + srg:(X")} (32)

where s, is an appropriately selected step size and g (X") is the subgradient of the
capacity constraint of machine k for time period ¢ defined by the optimal solution X" of

LRCAT‘:
g XT) =3 > (X[~ Xljep,)] (33)

i jumgek

Step size s, is calculated as follows:

_ UB—v(LRC’,\r)) .
& ‘““‘(NP (34

where «, is a scalar satisfying 0 < o, < 2 and UB is a target upper bound value for JSP
which can be updated over the iterations. Details of the subgradient search algorithm is
given in Section 3.4.

3.3 Scaling, Lagrangean Ranking and Schedule Preprocessing

Before going into further details of the subgradient search algorithm, note that in the
JSP formulation, the number of discrete time periods 7' has a significantly effect to the
computational tractability of the model. We scaled the processing times by a scaling factor
which provides an upper bound to the original model at a reduced computational cost.
In addition to reducing computer time, the scaling factor brings about several interesting
issues. First, since the JSP model is used to preprocess (rather than solve) the scheduling
instance at hand, we are more interested in analyzing the aggregate structure of the
problem rather than the minute-to-minute details. The scaling factor allows us to adjust
the “resolution” of the analysis.. Second, since we consider uncertain processing times, the
stochastic information about processing times could be used to determine a proper scaling
factor. Third, for regular performance measures (such as weighted tardiness) a unique
schedule can be determined by the operation ranking in each machine. For example, one
does not need to know the actual processing times to implement an SPT dispatching
rule. Knowing the relative processing time ranking would suffice. Thus, in theory, one
could maximize the scale of the processing time so long as the operational ranking is still
distinguishable. In general, the scaling factor provides a parametric trade-off between
model resolution and computational efficiency. Throughout our implementation, we use
scaled, adjusted processing times, F}; for the model.

Another important aspect of our proposed scheme is that we use Lagrangean Relaxation
and subgradient search to find a partially established ranking among the operations.

9

Specifically, in each subgradient iteration, we combine all solutions from job-level sub-
problems to get a capacity-infeasible shop schedule. Rased on this Lagrangean Schedule,
we define Lagrangean Ranking as follows:

Definition: (Lagrangean Ranking) Consider three specific conditions between operation
pairs (4,7) and (¢,7') in the Lagrangean Schedule as follows:

(1) (3,4) and (¢, j') require the same machine, i.e., my = Myy,

(2) there is no resource conflict between (4, j) and (¢, J) in the Lagrangean Schedule,
i.e., (Xi,j,t - qu,j,twpij) -+ (X'i",j",t - i’,j',t““Pg!jf) _<_ 1, and

(3) operation (i, 7) starts earlier than (4, j') in the Lagrangean Schedule, i.e., S <
S,irj.'

If an operation pair (4,7) and (7, ') satisfies (1)-(3)then we say that it is fully
ranked, and operation (i,7) has a higher priority than (¢',j'). For operation pairs
which satisfy conditions (1) and (3) but not (2), we say that they are weakly ranked.
All the other operation pairs are unranked.

Tt is clear from the definition that only operation pairs with no resource condlict in the
Lagrangean Schedule are fully ranked. Using the Lagrangean Ranking we can now define
a preprocessed scheduling instance by imposing a precedence constraint {4) between each
fully ranked pair of operations but not the weakly ranked pairs. Thus, the weakly ranked
pairs of operations represent scheduling decisions remain to be made. Note that under
dynamic dispatching, the Lagrangean ranking only takes into effect when the ranked pair
(4, 7) and (¢, j') are both in the candidate set. When they do not appear in the candidate
set at the same time, the Lagrangean Ranking is relaxed. This is necessary in order
to maintain the semi-active scheduling property [15]. Suppose we apply an active or
non-delay schedule generation routine on this preprocessed scheduling instance using any
priority dispatching rule, a feasible upper bound (UB}) solution for JSP can be generated.

_In this context the priority specified by the weak ranking could be used for job dispatching,.
Alternatively, one could use dynamic dispatching rule such as Apparent Tardiness Cost
(ATC) rule [18] which makes use of dynamic shop information over time.

The procedure described above can be used to generate upper bounds during each La-
_ grangean iteration. More importantly, we will use the procedure as a means to implement
the Preprocess-First-Schedule-Later scheme described earlier. This PFSL scheme is out-
lined as follows:

1. At the beginning of the planning period, use a priori scheduling data and stochas-
tic information to formulate a chance-constrained, Lagrangean-relaxed scheduling
problem (as described in Sections 3.1 and 3.2).

10

2. Solve the stated scheduling problem using a subgradient search algorithm (Section 3.4).
In each iteration, compute LB using the Lagrangean Schedule, compute UB using
the associated Lagrangean Ranking. At the end of the subgradient search, the
Lagrangean Ranking associated with the best UB is returned for preprocessing.

3. Preprocess the scheduling instance,i.e., adding precedence constraints for each fully
ranked operation pairs.

4. Release the preprocessed partial schedule to the shop. Generate the detailed schedule
dynamically using priority dispatching.

3.4 The Subgradient Search Algorithm

The subgradient search algorithm is summarized in Figure 1. When we implement the
algorithm, we generate the initial upper bound (Step 3) using the Apparent Tardiness
Cost (ATC) rule [18]. ATC is shown to be an effective heuristic for the weighted tardiness
objective [9]. We implemented a non-delay and an active versions of the ATC heuristic.
The Lagrange multipliers are initialized at 0. In computing the upper bound at each
subgradient iteration (Step 5.2) we implemented a non-delay and an active version using
priority dispatching defined by (1)weak ranking, or (2) the ATC rule. Results of all four
combinations are reported in the computational testing.

Another important implementation choice is the use of scaled or unscaled processing time
for upper bound calculation. Clearly the upper bound U B, used for step size calculation in
Steps 5.2-5.5 must be computed from scaled processing times since it should be consistent
with the lower bound values. However, in Steps 5.3 and 6 when we try to determine
the “best” upper bound, we could use an upper bound generated with the unscaled
processing times. This is because the unscaled processing times may provide a more
accurate assessment of the ultimate scheduling performance given a particular Lagrangean
Ranking. Both implementations are reported in the computational study.

11

Step 1. Read input data: number of jobs N, number of machines M, job weights W;,
due dates d;, mean {unscaled) processing times p;;, machine requirements m;;.
Read distribution information (a;; and b; in the Uniform case, o in the Normal
case).

Step 2. Calculate adjusted processing times P, for constraints (30) according to the
distribution type and confidence level 3. Scale the adjusted processing times to
obtain scaled processing times Fj;. Scale the due dates accordingly.

Step 3. Upper bound initialization: generate an active or a non-delay schedule using
a dispatching rule and scaled processing times. Use the upper bound schedule
to set a reasonable planning horizon T.

Step 4. Initialize the Lagrange multipliers Ay, the iteration counter r, and the scalar
parameter ;.

Step 5. Main Step: Perform the subgradient search for K iterations.

Step 5.1 Compute the Lagrangean lower bound (LB,): solve the job-level sub-
problems (29), (30}, (15), (20), (21) using scaled processing times Fj.
This results in a capacity-infeasible schedule with objective value v(LRC’N»)
which provides a lower bound for iteration r.

Step 5.2 Compute the Lagrangean upper bound (UB,):Determine the La-
grangean Ranking from the lower bound schedule. Preprocess the schedul-
ing instance using the fully ranked operation pairs, i.e., add a precedence
constraint for each fully ranked pairs. Use a non-delay or an active sched-
ule generation routine and a specified priority dispatching rule, generate a
feasible schedule from the preprocessed scheduling instance. This provides
an upper bound for iteration r.

Step 5.3 If the upper bound value UB, is lower than the best UB so far, then
update the upper bound, UB+UB,. Record the current Lagrangean Rank-
ing.

Step 5.4 Update scalar o, if necessary.

Step 5.5 Compute the subgradients gi:(X7), step size s, and update the La-
grangean multipliers A7F' based on (33), (34), and (32), respectively.

Step 6. Report the Lagrangean Ranking corresponding to the best UB over the K
jterations {or alternatively, report the Lagrangean Ranking corresponding to the
best lower bound Lagrangean Schedule). This is the Lagrangean Ranking to be
released for schedule preprocessing.

Figure 1: The Subgradient Search Algorithm

12

Table 2: Experimental factors and their levels in the simulation experiments
(Each factor combination is run 10 replications).

| Factor Levels [No of Levels ||
Problem Size 10x10, 20x15, 30x10 3
Confidence Level (50%), (80%) 2
Distribution Type Uniform, Normal 2
Uncertainty Level | Low (10%), Medium (30%), High (50%) 3

4 Computational Study

4.1 Experimental Design

We tested the proposed solution methodology in a Monte-Carlo environment simulating
shop disturbances. The base test problems are generated from standard makespan job
shop scheduling problems as described in [3]. We use 5 10x10 (10 jobs, 10 machines),
3 20x15, and 3 30x10 problems for testing. We coded each job-level scaled subproblem
with chance-constraints in AMPL [6] and solved using dual network simplex algorithm in
CPLEX [14]. A PentiumPro 200 Mhz personal computer with 64MB of RAM is used for
all testing. We set initial parameter values as follows: AY, = 0 Vk, 1, and ap = 2 for the
subgradient optimization procedure. We halve the value of « if there is no improvement
in the Lagrangean lower bound for 3 iterations and set the total number of iterations
K at 100 for 10x10 problems, and 200 for the others. For scaling, we divided adjusted
processing times by a fixed value and rounded them to nearest integer values to obtain
scaled processing times between 1 and 10. We scaled the due dates similarly. We used
a common confidence value 8 for all chance-constraints. We tested two confidence levels
as 3= 50%, and $=80%. Note that 50% confidence corresponds to using only mean
(original) processing times whereas 80% confidence uses the variance information.

To simulate the stochastic environment, we generate actual processing times pgj using two

distribution types:(1) Uniform:Ula;, bi;] where py; = 253 and (2)Normal: Nlpij, 03]
Note that we assume the processing times p;; specified in the scheduling data is the
mean of the underlying processing time distribution. We tested three levels of processing
time variation (V): 10%, 30% and 50%. In the case of Uniform distribution, the range
parameters are calculated as a;; = p;; — V % P and by; = py; +V = P where P is the overall
mean of the processing times. Thus, actual processing times p}; are generated using

discrete uniform distribution Ulay;, by;]. For the Normal distribution case, we equalize the

13

variance with the Uniform case as follows, i.e. we set

2 (b — ay)”
4 12

where b;; and a;; are from the Uniform case with corresponding variation level V. Note

that since a;; and b;; are calculated using single overall mean, the Normal variance values

are equal for all the operations, ie. ¢f = ¢ = V?5*/3. We truncated negative num-

bers and 0 generated in the implementation of these formulas to 1. For a surmmary of

experimental factors, see Table 2.

We test the performance of the proposed scheduling scheme under stochastic disturbances
using the following experimental steps:

Step 1. Given a scheduling problem and the distribution information about the process-
ing times, use the proposed PFSL scheme to find a preprocessed partial schedule
using the Lagrangean Ranking. '

Step 2. Complete the remainder of scheduling decisions over time using a specified dis-
patching method (i.e., Weak Ranking or ATC-ranking). Simulate this process using
a Monte Carlo experiment where the operation processing times vary according to
the specified distribution. At each dispatching point, the dispatching method uses
actual processing time that are known up to point while using the original (mean)
processing time for future operations. Report the total weighted tardiness at the
end of the simulation.

4.2 The Dynamic Dispatching Benchmark

To establish 2 benchmark for scheduling robustness we use the ATC dynamic dispatching
heuristic. As demonstrated in previous research [19] [3] dynamic dispatching heuristics
such as ATC serve as an excellent benchmark since they provide consistent performance
under a wide variety of shop conditions. To provide a broader base for the benchmark
we implemented four different versions of the ATC heuristic using active and non-delay
schedule generation routines assuming perfect and mean-value information on the process-
ing times. In the perfect information case, we first generate the actual (after perturbation)
processing times pj; and make this information available for each ATC priority calcula-
tion. In the mean-value case the ATC heuristic uses the mean processing time provided
with the scheduling problem for future jobs and actual processing times for jobs that are
already dispatched. In both cases, the heuristic is evaluated using Monte-Carlo simula-
tion with Uniform and Normal processing-time perturbation described above. In Table 3
we first summarize the results of the four different ATC implementations. As shown in
the table, ATC appears to be quite robust under different processing time variations.

14

Table 3: Experimental results with ATC dispatching (Each cell shows the
average total weighted tardiness over 50 instances: 5 10x10 prob-

lems each with 10 replications).

Mean-Value Information | Perfect Information
Active | Nondelay Active | Nondelay
Variation Level | Variation Type: Uniform Distribution
10% 8941.90 6417.16 8508.92 | 6497.04
30% 8847.56 7277.32 9058.54 | 7223.88
50% 9417.68 8052.56 10452.96 | 7969.96
Variation Level | Variation Type: Normal Distributio
10% 8905.22 6470.26 8365.3 6595.34
30% 8543.24 6951.28 8663.44 | 6767.08
50% 8373.46 7239.32 0454.66 | 6960.24

The heuristic yields better performance in the normal variation case than in the uniform
case at the same variation level. While non-delay ATC schedules significantly outperform
their active counterparts, the difference between perfect vs. mean-value information is
insignificant. This non-intuitive result can be explained by the fact that the ATC index
makes look ahead approximation at each dispatching point using aggregated future in-
formation on each job. As a result, using mean or actual processing times may not yield
significant performance difference. Based on this result, we will compare our approach
with non-delay ATC procedure using mean-value processing times.

4.3 Testing Implementation Choices

To test the proposed PFSL scheme using Lagrangean preprocessing we first compare the
effects of three different implementation choices using 10x10 test problems:

e Upper Bound Calculation: use unscaled vs. scaled processing time for upper bound
selection and schedule evaluation (see Section 3.4), ‘

» Dynamic Dispatching: After the Lagrangean pre-processing, complete the schedule
dynamically using weak-ranking vs. ATC-ranking, and

o Schedule Generation: Use active vs. non-delay procedure for schedule generation

The above implementation choices result in eight combinations, for each combination
we tested 50 10x10 instances {i.e., 5 base problems each repeated for 10 replications for

15

Table 4: Experimental results of the PFSL methodology (Bach cell shows
the average total weighted tardiness over 50 instances: 5 10x10
problems each with 10 replications).

UB Calculotion Unscaled Processing times Scaled Processing Times
Dispatching Weak Ranking ATC-Ranking Weak Ranking ATC-Ranking
Geh, Rowtine || Active | Nondelay | Active | Nondelay || Active | Nondelay | Active I Nondelay

8,V Variation Type: Uniform Distribution

80%, 10% 4566.70 | 632786 | 4980.12 | 6015.16 || 4973.52 | 6186.70 5323.64 | 5722.92
80%, 30% 5165.32 | 717028 | 591154 | 6917.92 | 5413.18 | 7037.78 608C.42 | 7191.02
80%, 50% 6627.56 | 8163.36 | 6059.26 | 8561.28 | 7714.94 | 8585.10 | 8011.72 8286.26
50%, 10% 4489.72 | 6181.14 | 5525.48 | 6839.14 | 5079.28 | 7500.76 | 5519.96 6956.40
50%, 30% 5379.22 | 7694.74 | 6964.66 | 7650.18 | 5853.82 ; 7908.18 6481.36 | 7772.06
50%, 50% 8042.38 | 000454 | 9020.22 | 9019.42 | 7995.12 | 9347.64 | 8165.32 9060.42

5,V Variation Type: Normal Distribution

80%, 10% 151856 | 6557.02 | B380.60 | 6110.76 | 4660.90 | 6839.98 | 5940.38 5369.78
80%, 30% 5431.26 | 6945.08 | 6121.26 | 672094 | 5942.60 | 6861.90 5829.60 | 6587.56
80%, 50% 6013.62 | 7721.78 | 6737.46 | 7887.30 | 6590.66 | 8080.44 | 6283.48 7258.70
50%, 10% 4630.64 | 6198.38 | 5209.34 | 6358.92 | 4960.24 | 6969.36 | 5552.00 7004.94
50%, 30% 5516.22 | 6865.04 | 6551.74 | 673852 || 6058.16 { 7517.72 | 641233 7129.40
50%, 50% 6792.16 | T759.62 | 7913.74 | 7237.02 | 744834 | 8154.90 | 7412.70 7828.72

processing time variation). The results are summarized in Table 4. We will first make a
few observations on the implementation differences before providing more detailed analysis
in subsequent sections.

Results:

o Contrary to the ATC benchmark in Table 3 active schedule generation works sig-
nificantly better under the PFSI scheme.

¢ Among the active scheduling results, using weak Lagrangean ranking for dynamic
dispatching appears to be better than using the ATC-ranking in almost all cases.
Interestingly, the situation reverses among the non-delay scheduling results: ATC-
ranking yields better tardiness in most cases.

e Comparing the results of different upper bound evaluation during the subgradient
search (using scaled vs. unscaled processing times), we see that the results are quite
similar and there is no clear dominance between either implementation.

16

4.4 Computational Results

We conducted a second set of experiments for larger size (20x15 and 30x10) test problems
using unscaled processing times, weak Lagrangean ranking and active schedule generation.
In the following we examine the conjectures stated in Section 2.2 using the 10x10, 20x15 |
and 30x10 computational results.

4.4.1 ‘'Tests for Conjecture 2: The Value of Second Moment Information

The second conjecture stated earlier claims that preprocessing strategies that incorporate
the second moment information of processing time variation are more robust than ones
that use only expected values. We test this conjecture by comparing the 80% and 50%
confidence levels () used to characterize the chance constraints. Recall that in the 80%-
confidence case both the mean and variance of processing time variations are used in
Lagrangean preprocessing, while in the 50% cases the variance information is ignored. As
the results in Table 4 show, in 85.4% (or 41 out of 48) of the cases the 80%-confidence
cases yield significantly lower (an average of 9.7%) weighted tardiness when compared to
the 50% cases.

The conjecture also state that the value of the second moment information increases as the
level of uncertainty increases. As can be computed from Table 4, in the high uncertainty
(V= 50%) cases, the algorithm benefits from the use of the variance information much
more frequently then the low uncertainty (V=10%) cases (94% vs. 69%). However, the
amount of improvement is roughly the same (10.8% vs. 10.2%).

Furthermore, the value of the second moment information is affected by the type of
distribution. It yields a performance improvement of up to 29.6% (11.3% average) in the
Uniform cases, and up to 19.3% (7.8% average) in the Normal cases.

The effect of using the second moment information is further depicted in Figures 2 and 3
where we plot the results from the implementation using weak ranking, unscaled process-
ing times and active scheduling. As the graphs show, the 80% confidence level draws the
lower envelope in both variation types and in all variation levels. Corresponding plots for
large-size problems are shown in Figures 4 and 7. As the figures show, the results from
90x15 and 30x10 problems support the conjecture that the second moment information
significantly improves scheduling robustness.

The figures also show that the performance improvement achieved by the second moment

information (comparing the 80%- and the 50%-confidence curves) is more pronounced in
Uniform distribution cases.

17

Result: The above observations suggest that the second moment information add signifi-
cant, value to the ¢ priori analysis used for preprocessing. Moreover, this information
has a higher marginal value when the level of uncertainty is higher (as is the case
when V=30%, 50%), and when the processing time variation is Uniformly (rather
than Normally) distributed.

4.4.2 'Tests for Conjecture 3: The Value of A Priori Analysis

In the third conjecture, we state that the performance of dynamic dispatching such as
ATC can be significantly improved by a priori analysis using stochastic information. To
test this conjecture we compare the results from straight-forward ATC dispatching (Table
3) and ATC dispatching after Lagrangean preprocessing (i.e., ATC-ranking for dynamic
dispatching in Table 4). As shown from the tables, if the Lagrangean preprocessing is
implemented using the second moment information (§=80%) and active schedule gener-
ation, it significantly outperforms straight-forward non-delay ATC dispatching under all
levels of uncertainty in all test cases (an average of 34% improvement, ranging from ™% to
80%). Figures 2-7 show graphically the performance of this preprocessing scheme (with
and without the variance information) as compared to the non-delay ATC heuristic. As

the graphs show, the performance of Lagrangean Preprocessing clearly dominate that of
ATC.

Conjecture 3 also states that the extent of the improvement varies depending on the
level of uncertainty, problem instances and the underlying distribution. Interestingly, the
problem size also plays a role here. For 10x10 problems, we observe that the performance
difference over ATC is consistent across different level of uncertainty. While for 20x15 and
30x10 problems the performance difference is more significant at high uncertainty levels.
On the other hand, the distribution type does not seem to have a significant effect to the
extent of improvement.

Result: The above observations suggest that a priori analysis using stochastic informa-
tion can significantly improve the performance of dynamic dispatching. The extent
of the improvement varies by the problem size and the level of uncertainty.

4.4.3 Tests for Conjecture 4: The Marginal Benefit of Stochastic Analysis

Conjecture 4 states that the marginal benefit of o priori stochastic information increases
as the level of uncertainty increases, and its effect varies depending on the characteristics
of its underlying statistical distributions. We will examine the first half of this conjecture

18

6500 o / A —o0—ATC

—- 80%

/ —a—50%
5500 /
5600 /n/
4500 E/

4000 7 T
10% 30% 50%

Variation Level

Weighted Tardiness

Figure 2: Average Weighted Tardiness versus Uncertainty Level for selected PEFSL settings
in Uniform processing time variation case {(10x10 problems)

8500

8000

7500

7000 ///"/o

7]

&0

O

£ _

% o500 . / /4 Tt
2 —1—80%
£ £ —A—50%
B

@

=

6000 /
5500 /

5000 /
4500
o
4000 : .
10% 30% 50%

Varation Levesl

Figure 3: Average Weighted Tardiness versus Uncertainty Level for selected PFSL settings
in Normal processing time variation case (10x10 problems)

19

17000

16000
15000 /
14000 Pad
~~— ATC
13000 —E— 80%
/ —A 50%
-2 12000 //
11000 07//{
10000 e

9000 T T
10% 30% 50%

Variation Level

o

Weighted Tardiness

Figure 4: Average Weighted Tardiness versus Uncertainty Level for selected PFSL settings
in Uniform processing time variation case (20x15 problems)

17000

16000

15G00

14000

/A —&— ATC
13000 =3 80%
—&—50%

12060 /
10000
$000 Y y

10% 30% 50%

Variation Level

Waighted Tardiness

Figure 5: Average Weighted Tardiness versus Uncertainty Level for selected PFSL settings
in Normal processing time variation case (20x15 problemas)

20

21000 /‘-
19000
—&- ATC
~3—80%

15060 50%

13000 r— /D/
—

17000

Waighted Tardiness

11000

2000 T T
10% 30% 50%

Variation Level

Figure 6: Average Weighted Tardiness versus Uncertainty Level for selected PI'SL settings
in Uniform processing time variation case (30x10 problems)

21000

19000

17000 /
—— ATC
—0—80%

Weighied Tardiness

15000 // —8—50%
13000 a

11000

9000 g :
16% 30% 50%

Vatiation Level

Figure 7: Average Weighted Tardiness versus Uncertainty Level for selected PFSL settings
in Normal processing time variation case (30x10 problems)

21

using Figures 2-7. As the figures show, while the performance of ATC and 50%-confidence
preprocessing without variance information (both methods ignore the stochastic informa-
tion) deteriorate rapidly as the level of uncertainty increases, 80%-confidence preprocess-
ing appears to be very robust to the changes in processing time uncertainty. This supports
the conjecture that the stochastic analysis has an increasing importance as the level of
uncertainty increases.

Now consider the second half of the conjecture. As we compare the slopes of the curves,
we see that all methods are more sensitive to the uncertainty levels under Uniform dis-
tribution. As pointed out earlier, the plots also show that the performance improvement
achieved by the second moment information (comparing the 80%- 50%- confidence cases)
is more pronounced in the Uniform distribution cases. Recall that we have equalized the
variance between the Uniform and the Normal distributions. If we compare the Uniform
vs. Normal distribution results in Table 4, (at three corresponding levels of uncertainty),
we find that 71% of the time (or 34 out of 48 cases) the preprocessing algorithm achieve
a better performance under Normally distributed variations.

Result: The above observations suggest that a priori stochastic analysis indeed improve
scheduling robustness. Compared to methods ignoring stochastic information, its
benefit is more evident when (1) the level of uncertainty is high, and (2)when the
variation is Uniformly distributed. However, comparing different statistical assump-
tions (Uniform vs. Normal distribution under equalized variance), Normal distribu-
tion appears to provide more valuable a prior: information.

4.4.4 Remarks on Due Date Tightness

As the results presented in the previous sections show, problem instances do affect the
performance of the PFSL scheme. When we first tested the 20x15 problem instances an
interesting observation was made: during preprocessing the Lagrangean relaxation lower
bound did not improve over 200 subgradient iterations, and the performance of PFSL was
no better than that of a straight-forward ATC. Further investigation revealed that the
LP-relaxation lower bound (which presents a theoretic upper bound for the Lagrangean
relaxation lower bound in our model) is equal to 0 for almost all problems in this test set.
That is, if we relax the binary constrains on the decision variables, we can process all the
jobs on or before their due dates and obtain 0 weighted tardiness. Hence, the subgradient
search algorithm does not have the needed information to improve the LR lower bound
(the LB is always 0}.

To address this issue we solve a surrogate Lagrangean relaxation problem during the
preprocessing phase. The surrogate problem is created by subtracting a fixed value A

from the original due dates for the LR problem and solved the revised problem using the

22

17000

16000

15000 ?
[/
8 14000 2 —0—ATG
= —W—50% ,A=0
g =
f5 13000 —od— 50% A= 0
g / / —3- 80% , A= 100
G
=

12000 W —2—50% , A= 100
11000

10000

2000 r r
10% 30% 50%

Variation Level

Figure 8: Effects of surrogate scheme (A = 100) on PFSL algorithm. (Uniform processing
time variation case, 20x15 problems)

17000

16000

15000
8 /
8 14000 —o—~ATC
g P Aw 0
2 / //A 80% ,
18000 / —&-50% , A=0
9 et
:5) 12000 /./ /0 —— 80% , A= 100
%’ oy 50% , A= 100

11000 e

10000

9000 r ;
10% 30% 50%

Variation L.avel ‘

Figure 9: Effects of surrogate scheme (A = 100) on PFSL algorithm. (Normal processing
time variation case, 20x15 problems}

23

subgradient search algorithm. At the end of the search we use the established Lagrangean
ranking (both full and weak ranking) as before. When simulating the performance of
this PFSL scheme, we use the original due dates. With this simple scheme, we have
successfully overcome the “degeneracy” problem during the subgradient search. Figures 8
and 9 show the results of this set of experiments for 20x15 problems. As the graph
depicts, the surrogate scheme significantly improve the performance of the preprocessing
algorithm. All 20x15 results shown in earlier sections correspond to this improved version.

5 Conclusions

We have developed a preprocess-first-schedule-later scheme for job shop scheduling with
the purpose of improving scheduling robustness. We first perform a Lagrangean relaxation
of the machine capacity constrains which results in network-structured job subproblems.
Based on stochastic information about the jobs, we add stochastic processing time con-
strains to the job subproblems. The resulting chance-constrained stochastic program
makes use of the first and second moment information on the processing time. This extra
information comes at little computational expense since the subproblems still have the
integrality property. Using a subgradient search algorithm, we preprocess each schedul-
ing instance by solving the stochastic model. After preprocessing, a Lagrangean Ranking
is established for the schedule. The actual schedule is generated dynamically using the
Lagrangean ranking. Intensive computational testing supports many of the conjectures
listed in Section 2.2. The main results are summarized at the end of each subsection in
Section 4.

We demonstrated that both stochastic analysis and dynamic adaptation could significantly
improve scheduling robustness. Making use of second moment stochastic information
achieves significant improvement in a majority of the cases. More importantly, the benefit
of stochastic analysis are more significant in larger size problems at a higher level of
uncertainty. Not surprisingly, the marginal benefit of stochastic preprocessing is also
affected by the assumed statistical distributions and problem instances.

Acknowledgement

The research is supported, in part, by National Science Foundation Grant DMI-9634808
and SBR-9422862. ‘

24

References

[1]

[2]

13]

[7]
(8]

9]

[10]

[11]

(12]

[13]

P. Baptiste and J. Favrel. Taking into account the rescheduling problem during the
scheduling phase. Production Planning and Conirol, 4:349-360, 1993.

J. C. Bean, J. R. Birge, J. Mittenthal, and C. E. Noon. Matchup scheduling with
multiple resources, release dates and disruptions. Operations Research, 39(3):470-
483, 1991.

E. §. Byeon, S. D. Wu, and R. H. Storer. Decomposition heuristics for robust job
shop scheduling. Technical Report 93T-008, Lehigh University, Bethlehem, PA, 1993,
to appear in JEEE Transactions on Robotics and Automation.

A. Charnes and W. W. Cooper. Chance-constrained programming. Management
Science, 6:73-79, 1959.

L. K. Church and R. Uzsoy. Analysis of periodic and event-driven rescheduling poli-
cies in dynamic shops. International Journal of Computer Integroted Manufacturing,
5:153-163, 1992,

R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for
Mathematical Programming. Boyd and Fraser Publishing Company, Danvers, MA,
1993.

G. Gallego. Linear control policies for scheduling a single facility after an initial
disruption. Technical Report 770, Cornell University, Ithaca, NY, 1938.

G. Gallego. Produce-up-to policicies for scheduling a single facility after an initial
disruption. Technical Report 771, Cornell University, Ithaca, NY, 1988.

E. Kutanoglu and 1. Sabuncuoglu. Experimental investigation of scheduling rules in
a dynamic job shop with weighted tardiness costs. In Proceedings of 3rd Industrial
Engineering Research Conference, Atlanta, GA, 1994,

S. V. Mehta and R. Uzsoy. Predictable scheduling of a job-shop subject to break-
downs. TEEE Transactions on Robotics and Automation, Forthcoming:149-156, 1997.

T. . Morton, S. Lawrence, S. Rajagopalan, and 5. Kekre. MRP-STAR PATRI-
ARCH’s planning module. Working Paper, Graduate School of Industrial Adminis-
tration, Carnegie Mellon University, 1986.

T. . Morton, S. Lawrence, S. Rajagopalan, and 5. Kekre. A price-based shop
scheduling module. Working Paper, Graduate School of Industriel Administration,
Carnegie Mellon University, 1988.

A. P. Muhlemann, A. G. Lockett, and C. K. Farn. Job shop scheduling heuristic and
frequency of scheduling. International Journal of Production Research, 20(2):227-
241, 1982.

25

[14] CPLEX Optimization. Using the CPLEX base system including CPLEX mixed
integer solver and barrier solver options, 1995. '

(15] M. Pinedo. Scheduling: Theory, Algorithms and Systems. Prentice Hall, Englewood
Cliffs, NJ, 1995.

[16] A. Pritsker, L. Watters, and P. Wolfe. Multiproject scheduling with limited resources:

A zero-one programming approach. Management Science: Theory, 16(1):93-108,
1969. :

[17] R.O. Roundy, W. L. Maxwell, Y. T. Herer, S. R. Tayur, and A. W. Getzler. A price-
directed approach to real-time scheduling of production operations. ITE Transactions,
23(2):149-160, 1991.

[18] A. P. J. Vepsalainen and T. E. Morton. Priority rules for job shops with weighted
tardiness costs. Management Science, 33(8):1035-1047, 1987.

[19] S. D. Wuy, E. S. Byeon, and R. H. Storer. A graph-theoretic decomposition of job
shop scheduling problems to achieve scheduling robustness. Technical Report 93T-
009, Lehigh University, Bethlehem, PA, 1993, to appear in Operations Research.

[20] S. D. Wu, R. H. Storer, and P. C. Chang. A rescheduling procedure for manufacturing
systems under random disruptions. In New Directions for OR in Manufacturing.
Springet-Verlag, 1992.

[21] S. D. Wu, R. H. Storer, and P. C. Chang. One machine rescheduling heuristics with
efficiency and stability as criteria. Computers and Operations Research, 20:1-14,
1993.

[22] M. Yamamoto and S. Y. Nof. Scheduling/rescheduling in the manufacturing oper-
ating system environment. International Journal of Production Research, 23(4):705~
722, 1985.

February 7, 1998

26

