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Characterizing Human Mesenchymal Stem Cell Motility in Response to the Wound

Human mesenchymal stem cells (hMSCs) provide an opportunity to treat chronic wounds by
helping these wounds progress past the inflammatory phase. They perform an important
regulatory function in the inflammation stage of wound healing by reducing secretion of tumor
necrosis factor-alpha (TNF-a), an inflammatory cytokine, and increasing secretion of interleukin-
10 (IL-10) and IL-4, which are anti-inflammatory cytokines. The ability of hMSCs to migrate
through the extracellular matrix (ECM) is affected by their secretion of matrix metalloproteinases
(MMPs) and tissue inhibitors of metalloproteinase (TIMPs). MMPs promote hMSC migration by
degrading components of the ECM to form micrometer channels to travel through to reach the
wound site. TIMPs inhibit MMP degradation. Synthetic hydrogel scaffolds with encapsulated
hMSCs are designed to mimic the ECM and are being developed to deliver additional hMSCs to
the wound site to assist with healing. The body releases signals from the wound site during
healing, including cytokines TNF-a and transforming growth factor beta (TGF-8) . TNF-a
Increases hMSC secretion of MMPs and TGF-[3 increases secretions of TIMPs. In this work, we
Incubate hMSC-laden synthetic scaffolds in media with cytokines to model the native
environment these materials would experience after implantation in a wound. We also develop
models using Michaelis-Menten enzymatic inhibition kinetics to predict how the cytokine TNF-a
affects the process of hLMSC-mediated remodeling of synthetic hydrogel after implantation.

Multiple particle tracking microrheology (MPT)

Human mesenchymal stem cells (hMSCs) role in wound healing
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 hMSCs help chronic wounds progress past the
Inflammatory phase

« hMSCs migrate through the ECM by secreting MMPs
which degrade micrometer channels into the ECM an

TIMPs which inhibit the action of MMPs
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Cell migrates from point a to point 3
d over a 48-hour period. The dark regions
show the void regions of the hydrogel

resulting from degradation
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MPT tracks fluorescent particles to measure their Brownian motion, this allows us to determine
the rheological properties and state of the hydrogel
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TGF-B & TNF-a effects on cell degradation profiles

Data taken over 4 days of degradation of hnMSC-mediated scaffold remodeling when
iIncubated in TGF-3, TNF-a, and cell media (control).
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Michaelis-Menten kinetic model

MATLAB code development

Poly(ethylene glycol)-norbornene synthetic hydrogels

hMSCs are encapsulated in a PEG-N hydrogel scaffold which is then inserted in the center

of a ring of PDMS adhered to a petri dish to collect microrheological data
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+ TGF-B or TNF-a

We measure cell speed by finding cell centers in ImageJ. | developed a MATLAB code that both
speeds up and increases the accuracy of this process. The user circles the cell for Image J to
calculate the center of the cell (x,y). MATLAB automatically iterates through all the cell samples.

Brightfield cell image with cell
circled by user in ImageJ

MIJ.run("Measure");
MIJ.run("Open Next");
if (stremp (MIJ.getCurrentTitle, 'cell 001.tif"))
break;

while 1

MIJ.run("Select None");

MIJ.run("Flip Vertically");

ij.IJ.runMacro('setTool ("freehand™);");

1j.IJ.runMacro('waitForUser ("Waiting for user to draw. Press Okay to continue");');

MATLAB code relies heavily on Fiji's Miji program’s (mij.jar) ability to

take MATLAB strings and convert to Image J Macros
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Point Lag1 | MSD11 MSD21 MSD31 MSD41 MSD51 MSD61 taucount1 alpha11 alpha21 alpha31 alphad1 | |
0 0.0333333 0.00185251 0.00177638 0.00179468 0.0017126 8941 0.0721456 0.0611584 0.055053 0.0652458 ~
1 0.0666667 0.00215745 0.00216328 0.00218393 0.00210444 8915
2 0.1 0.00191799 0.00181748 0.0018529 0.0017781 8923
3 0.133333 0.00179983 0.00163145 0.00167443 0.00157635 8941
4 0.166667 0.00197793 0.00189196 0.00190401 0.00181327 8891
5 02 0.00237399 0.00231155 0.00235818 0.00226375 8862
6 0.233333 0.00198587 0.00182848 0.00187999 0.00180508 8896
7 0.266667 0.00186182 0.00169315 0.00173269 0.00165024 8902
8 0.3 0.00229063 0.00220573 0.00224771 0.00213948 8841
9 0.333333 0.00216826 0.00208461 0.00209723 0.00200829 8840
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» Make/N=1/D alpha41
+ alpha41=IntSloDummy[1]
* AppendToTable alpha41
* IntSlo4[counter4][0]=IntSloDummy[0]
= IntSlo4[counterd][1]=IntSloDummy[1]
» KillWaves IntSloDummy
* counterd=counter4+1
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LoadWave/J/DW/A/E=1/K=0/L={0,1,799,0,0} FWindows-SSD(C:):Users;jcata:OneDrive:Documents:Research:002MSD..txt]

A second part of the code takes the cell centers and corresponding probe text files as an input
to create Igor Pro code that can be used to calculate, graph, and tabulate the alpha values for
a set of 4 distances (r) away from each cell.

hMSC degradation of a PEG-N hydrogel can be modeled using Michaelis-Menten kinetics.
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Normalized reaction rate

o

O
o

O
!

<
N

O
¥

8

r/ry
« Kinetic model for a hydrogel

without cytokines

 To model TNF-a sample
Kinetics, initial MMP
concentration can be modified
to fit experimental data

Conclusions

« We can add cytokines TGF- and TNF-a into cell media to test their effects on hMSC

degradation.

 TNF-a increases hMSC degradation by increasing MMP secretion, effects are especially
prevalent at a larger time scale.

« Although TGF-B increases TIMP secretion, additional TIMP secretion doesn’t slow down
degradation any further, meaning TIMPs are already present in excess.

« Cell-mediated degradation kinetics when incubated with TNF-a can be found by altering
MMP concentration in a Michaelis-Menten kinetic model
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