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Online product review aggregating websites such as Yelp and Amazon, 

allows users to leave reviews based on their level of satisfaction on a 

specific product. However, the opportunity for users to leave reviews 

introduces the possibility for spammer reviews, i.e., reviews that serve to 

hurt or promote a business, disregarding their actual experience with the 

product. Utilizing Graphical Neural Networks, and Multi-objective 

Optimization, we construct a graphical model of the 3 different datasets, to 

train the model to multi-task: detect spammers and reduce discrimination 

and bias toward protected products. 

Abstract

• Model data as undirected graph, three different nodes:

User, Review, Product.

• Every node contains array of features and ground-truth label 

to identify it as a spammer or non-spammer.

• Input data into Neural Network, each hidden layer is a Graphical 

Convolutional Layer (or known as GCN for short)

• Output data is a vector of predicted spammer and non-spammer 

• Model attempts to optimizes parameters based on spammer 

detection accuracy, and discrimination bias

Problem Definition

The NN will train under 2 objective functions: NDCG and Disparate Impact

Objective 1: Normalized Discounted Cumulative Gain (NDCG)

• The NDCG metric measures 

how well the model detects 

spammers on a ranking scale

• Ideal score is achieved when 

the model ranks all spammers 

in the top, and non-spammers 

in the bottom

• Model DCG score is calculated 

based on how model ranks 

each review, NDCG score 

compares model DCG score 

and ideal DCG score 

• Objective is to maximize this 

value, as close to 1 as possible

Objective 2: Disparate Impact

• The Disparate Impact metric 

measures the level of 

discrimination difference between 

two different groups of reviews

• Ideal score is achieved when 

the model detects spammers in 

equal proportion for protected 

and non-protected groups

• Score is measured based on 

how much the model prediction, 

and spammer score differ from 

each of the two groups

• Objective is to minimize this 

value, as close to 0 as possible

Final Objective: Optimize NDCG and Disparate Impact Simultaneously

• Calculate optimal proportion of spammer detection and fairness bias 

• Model optimal final objective as L2-norm of the sum of both objective 

functions

• In order to optimize the model further, constantly update the neural 

network parameter based on the update function

Methodology

• Train 3 different models with 3 different datasets, plot to check 

convergence

Training Model Results:

• Model trained under 100 iterations of 

loss calculation and parameter updates

• Both objectives (NDCG, Disparate Impact)

converge nicely, however, Disparate Impact

results are a bit stochastic

• Visualize lambda multipliers

(blue – NDCG, red – Disparate Impact)

• Minimum is achieved when more emphasis

is placed on NDCG than Disparate Impact

Testing Model Results:

• Testing model, achieves a relatively 

high accuracy in Spam Detection

• Fairness Loss is high for New Jersey 

relative to other datasets, but incredibly 

low in general

• Spammer reviews contribute majority 

to Fairness Loss

• Model can simultaneously train on two 

objectives of both Spam Detecting and 

Fairness/Discrimination Bias

Objective 1: NDCG Score (0 – Minimum, 1 – Maximum) Objective 2: Disparate Impact (0 – Maximum, 1 – Minimum)
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Experimental Results

• The Multi-Objective Optimization framework works with two objectives

• Applications of this work can be realized when training models to be 

fairer in other areas of work fairness, discrimination, and more

• Potentially introduce more than 2 objectives in Machine Learning model
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