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M Abstract

Online product review aggregating websites such as Yelp and Amazon,
allows users to leave reviews based on their level of satisfaction on a
specific product. However, the opportunity for users to leave reviews
Introduces the possibility for spammer reviews, I.e., reviews that serve to
hurt or promote a business, disregarding their actual experience with the
product. Utilizing Graphical Neural Networks, and Multi-objective
Optimization, we construct a graphical model of the 3 different datasets, to
train the model to multi-task: detect spammers and reduce discrimination
and bias toward protected products.

l Problem Definition

 Model data as undirected graph, three different nodes:
User, Review, Product.
* Every node contains array of features and ground-truth label
to identify It as a spammer or non-spammer.
* Input data into Neural Network, each hidden layer is a Graphical
Convolutional Layer (or known as GCN for short)
« Qutput data Is a vector of predicted spammer and non-spammer
 Model attempts to optimizes parameters based on spammer
detection accuracy, and discrimination bias
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l Methodology

The NN will train under 2 objective functions: NDCG and Disparate Impact

ODbjective 1: Normalized Discounted Cumulative Gain (NDCG)
« The NDCG metric measures
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Objective 2: Disparate Impact
 The Disparate Impact metric
measures the level of
discrimination difference between I 252
two different groups of reviews
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Final Objective: Optimize NDCG and Disparate Impact Simultaneously

« (Calculate optimal proportion of spammer detection and fairness bias

* Model optimal final objective as L2-norm of the sum of both objective
functions

* |n order to optimize the model further, constantly update the neural
network parameter based on the update function
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l Experimental Results

* Train 3 different models with 3 different datasets, plot to check
convergence

Training Model Results:
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* Model trained under 100 iterations of
loss calculation and parameter updates

* Both objectives (NDCG, Disparate Impact)
converge nicely, however, Disparate Impact
results are a bit stochastic

* Visualize lambda multipliers
(blue — NDCG, red — Disparate Impact)

 Minimum is achieved when more emphasis
IS placed on NDCG than Disparate Impact
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Testing Model Results:
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Figure 4.6-47 » Fairness Loss is high for New Jersey
relative to other datasets, but incredibly
low In general
* Spammer reviews contribute majority
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* Model can simultaneously train on two

objectives of both Spam Detecting and

Fairness/Discrimination Bias
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l Future Work

« The Multi-Objective Optimization framework works with two objectives

« Applications of this work can be realized when training models to be
fairer in other areas of work fairness, discrimination, and more

* Potentially introduce more than 2 objectives in Machine Learning model
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