Non-linear Model Predictive Control for High-speed Autonomous Racing

Maria Maragkelli
Department of Mechanical Engineering and Mechanics at Lehigh University, Bethlehem, PA, 18015, USA

Methods and Results

1st Direction - Software
Development of Non-linear Model Predictive Control algorithms (MPC), using Ipopt (optimizing software).

Characteristics and assumptions:
- Perfect localization
- Absence of other vehicles
- Small number of finite time steps
- Bicycle model
- Use of Euler’s method

\[
\begin{align*}
 x_{t+1} &= x_t + v_t \cos(\theta_t) \\
 y_{t+1} &= y_t + v_t \sin(\theta_t) \\
 \theta_{t+1} &= \theta_t + \omega_t
\end{align*}
\]

2nd Direction - Hardware
Development of a lane detection algorithm and direct implementation on our current test robot, Anki Cozmo. The following methods are used:

- Hough Transform
- Polygon Center

Take-aways
- Need for high-speed calculations
- Projecting a 2D center of the lane on a 3D environment.

Next Steps / Future Work
- Integration of individual components and testing in simulation (Carla).
- Implementation of the algorithms with the aid of simulated sensors.
- Deployment of an autonomous miniature racecar based only on its onboard sensors at high speed potentially with adversarial obstacles.

Acknowledgements
David and Lorraine Freed Undergraduate Research Symposium, Lehigh University
Dr. Cristian Ioan Vasile and Disha Kamale