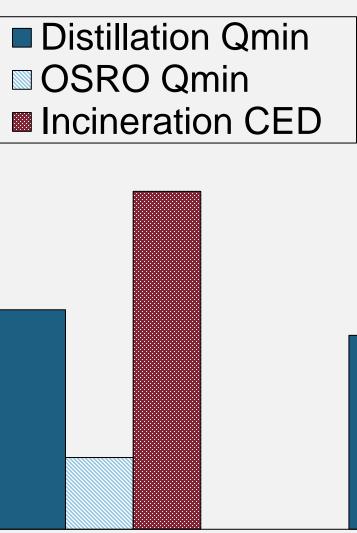

Reevaluating Green Solvent Metrics Using End-of-Life Considerations Sasha Neefe, Dr. Lindsay Soh, Chemical Engineering, Lafayette College LAFAYETTE COLLEGE

Family	Solvent	AZ	GCI-PR	GSK	Pfizer	San
Esters	Methyl acetate	—	14	14	—	Sub
	Ethyl acetate	18	15	16	Preferred	Rec
	i-PrOAc	18	13	18	Preferred	Rec
	n-BuOAc	13	14	21	—	Rec
Ethers	Diethyl ether	27	21	3	Undesirable	Bar
	Diisopropyl ether	_	-	4	Undesirable	Sub

Acknowledgements:

David and Lorraine Freed Undergraduate Research Symposium, Lehigh University. Lafayette College Professors Lindsay Soh, Aseel Bala, Benjamin Cohen. Lafayette College Department of Chemical and Biomolecular Engineering.

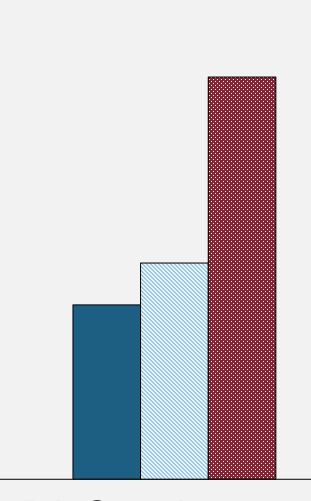
Cumulative Energy Demand


Comparing energy required to recover one mole of solvent from binary mixtures using each separation method vs. $CED_{incin.} \rightarrow$ the least energy intensive end-of-life route.

• The separation of binary mixtures are based on the recovery of one mixture component at 99.5% (virgin) purity.

• The recovered solvent must be that which permeates using OSRO; the actual calculated distillation Q_{min} must be halved. • Further work must be done for OSRO retentate recovery.

 Table 2. Solvents in binary mixtures and recovered solvent


IPA	Methanol	Toluene	Cyclohexanone
olvent	Methanol	IPA	IPA

IPA-Toluene

Binary Mixture

IPA-Cyclohexanone

Fig. 9. End-of-life processing routes have energy demands that differ due to components present in mixture

Conclusion

• **Distillation** Q_{min} is dependent on the difference in T_h between the solvents in the binary mixture and recovers both solvents. • **OSRO** requires stages, and Q_{min} depends on the polarity, viscosity, and size of the solvents, recovering the permeate. • Larger molecules have higher Q returns when incinerated. • In example, OSRO is the least energetically demanding end-of-life process for the IPA-methanol and IPA-toluene mixtures, while distillation is preferred for IPA-cyclohexanone.

References

[1] D. J. C. Constable, Org. Process Res. Dev., vol. 11, pp. 133–137, 2007. [2] D. Prat, *Green Chem.*, vol. 16, pp. 4546–4551, 2014. [3] Judson King, Separation Processes, Second. United States: McGraw-Hill, Inc., 1980. [4] Cuijing Liu, Appl. Mater. Interfaces, no. 12, pp. 7586–7594, 2020. [5] Ludamila G. Peeva, *J. Membr. Sci.*, no. 236, pp. 121–136, 2004. [6] C. Seyler, *J. Clean. Prod.*, vol. 13, pp. 1211–1224, 2005. **3910** [7] C. Capello, *Green Chem.*, vol. 9, pp. 927–934, 2006.

> P.C. ROSSIN COLLEGE OF ENGINEERING AND APPLIED SCIENCE