[AFAYETTE

COLLEGE

Introduction

Person identification is used every day in a
variety of applications from access control and
security cameras to social media and face ID on
smartphones.

The process of person identification involves
different biometrics such as face, voice,
fingerprint, etc.

However, there are still various limitations to

their efficiency which makes them incompletely
reliable.

In public settings, like that of a museum, using
one biometric alone becomes challenging due
to factors like background noise, overlap of
people’s faces, varying angles and/or distances
from the camera, as well as the recently
introduced challenge of face masks.

Methodology

Importing Dataset

Preprocessing

Convert all stereo

audio to mono audio
Extract frames from

each video

Remove all silence
and unvoiced speech

Feature Extraction

Implement Viola-
Jones algorithm to
detect faces

Extract Pitch and
MFC Coefficients

Classification using CNNs
AlexNet CNN VGGish CNN

Decision-Level Fusion

Dataset

Michigan State University Audio-Video
Surveillance (MSU-AVIS) Dataset: '

* 50 Subjects (16 females, 34 males)
* Image data variations include:

= |Indoor illumination
= Facial expressions
= Pose & distance relative to the camera

 Audio data variations include:

* Indoor reverberations
= Background Noise
= Distance from the microphone

Indoor

Feature Extraction

Viola-Jones Algorithm:

1. Divide image into
squares

2. Calculate delta of sum

(shaded) and sum
(unshaded)

3. Identify any Haar-like
features

4.Crop the 227 x 227px
square where a face
was identified

Edge Features I

Line Features

Center-surround Features

Figure 1. Demonstration of the
Viola Jones Algorithm 2

Pitch:
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Figure 2. Extracting pitch from the voiced speech portions of an audio 3

Mel Frequency Cepstral Coefficients (MFCCs):
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Figure 3. Block diagram of the Mel Frequency Cepstrum 4

Convolutional Neural Networks (CNNs)

Image CNN:
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Figure 4. Layers of AlexNet CNN after adjusting them to my problem

Audio CNN:
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Figure 5. Confusion Matrix for the Face Recognition Test Results
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igure 6. Layers of VGGish CNN after adjusting them to my problem
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Figure 7. Confusion Matrix for the Soeaker Recognition Test Results
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Fusion

Three decision-level fusion algorithms were

implemented:
1. Fusing by
2. Fusing by
3. Fusing by

Nig
Nig

Nig

ner confidence
ner confidence after normalization

ner entropy of confidence scores

Image-Audio Fusion Results
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Figure 8. Confusion Marix for the Decision-Level Fusion Test Results
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Conclusions & Future Directions

Results prove that biometric fusion improves the
accuracy of person identification compared to using
a single biometric.

Future work will include:

» Expanding the dataset to include more subjects

» Testing other convolutional neural networks

» Testing other fusion strategies (e.g., feature-level)

» Using greyscale edge detection for a color-blind
face recognition system

* Implementing a two-stage system that first passes
through a binary classifier in order to minimize the
number of possible classes in the second stage
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