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• Person identification is used every day in a
variety of applications from access control and
security cameras to social media and face ID on
smartphones.

• The process of person identification involves
different biometrics such as face, voice,
fingerprint, etc.

• However, there are still various limitations to
their efficiency which makes them incompletely
reliable.

• In public settings, like that of a museum, using
one biometric alone becomes challenging due
to factors like background noise, overlap of
people’s faces, varying angles and/or distances
from the camera, as well as the recently
introduced challenge of face masks.
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Dataset
Michigan State University Audio-Video Indoor
Surveillance (MSU-AVIS) Dataset: 1
• 50 Subjects (16 females, 34 males)
• Image data variations include:

§ Indoor illumination
§ Facial expressions
§ Pose & distance relative to the camera

• Audio data variations include:
§ Indoor reverberations
§ Background Noise
§ Distance from the microphone

Feature Extraction
Viola-Jones Algorithm:

Pitch:

1. Divide image into 
squares

2. Calculate delta of sum 
(shaded) and sum 
(unshaded)

3. Identify any Haar-like 
features

4. Crop the 227 × 227𝑝𝑥
square where a face 
was identified

Figure 1. Demonstration of the 
Viola Jones Algorithm 2

Figure 2. Extracting pitch from the voiced speech portions of an audio 3

Mel Frequency Cepstral Coefficients (MFCCs):

Figure 3. Block diagram of the Mel Frequency Cepstrum 4
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Image CNN:

Figure 4. Layers of AlexNet CNN after adjusting them to my problem

Figure 5. Confusion Matrix for the Face Recognition Test Results

Audio CNN:

Figure 6. Layers of VGGish CNN after adjusting them to my problem

Figure 7. Confusion Matrix for the Soeaker Recognition Test Results

Figure 8. Confusion Marix for the Decision-Level Fusion Test Results

Three decision-level fusion algorithms were
implemented:
1. Fusing by higher confidence
2. Fusing by higher confidence after normalization
3. Fusing by higher entropy of confidence scores
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Results prove that biometric fusion improves the
accuracy of person identification compared to using
a single biometric.
Future work will include:
• Expanding the dataset to include more subjects
• Testing other convolutional neural networks
• Testing other fusion strategies (e.g., feature-level)
• Using greyscale edge detection for a color-blind

face recognition system
• Implementing a two-stage system that first passes

through a binary classifier in order to minimize the
number of possible classes in the second stage
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