Characterizing Cell-Material Interactions When Chemical Cues are Presented Locally to Human Mesenchymal Stem Cells

Kiera Croland, Rylie Urbanski, Caitlin Stoddard, John McGlynn, Kelly Schultz
Department of Chemical Engineering, Lehigh University, Bethlehem, PA

Introduction

- Cell-laden hydrogels are designed to enhance cell delivery to and create structure for damaged tissues in wound healing applications.
- Human mesenchymal stem cells (hMSCs) are chosen for cell delivery due to their importance to tissue regeneration in signaling to other cells during wound healing.
- Cytokines, which are present in the native wound environment, are tethered to the hydrogel network to determine their effect on hMSC remodeling

Cytokines and Wound Healing

TFN-α and TGF-β are cytokines which signal to hMSCs during wound healing

- TFN-α: Present from inflammation to remodeling
- TGF-β: Promotes ECM structure by increasing TIMP secretions which inhibit MMP activity

Poly(ethylene-glycol) Hydrogels

hMSCs are encapsulated into a poly(ethylene-glycol)-norbornene (PEG-N) hydrogel.

- Gels formed via a step-growth photopolymerization
- Gels are kept at 37 °C and 5% CO₂
- Hydrogels have a MMP degradable crosslinker

Cytokine Thiolation

Cytokines (symbolized with hexagon) were thiolated using Traut’s reagent.

The presence of cytokines in the hydrogel is confirmed using an enzyme-linked immunosorbent substrate assay (ELISA). The blue color in the gel (left) indicates that the cytokines are successfully tethered into the network.

Multiple Particle Tracking Microrheology (MPT)

MPT is a passive microrheological technique that measures the Brownian motion of fluorescent probes embedded in the hydrogel network to obtain bulk rheological properties.

\[\langle \Delta r^2 (\tau) \rangle = d \log (\Delta r^2 (\tau)) \]
\[\alpha = \frac{d \log (\Delta r^2 (\tau))}{d \log \tau} \]

α is the logarithmic slope of the MSD and is used to quantify the state of the material

- α = 0: gel
- 0 < α < 1: viscoelastic gel or liquid
- α = 1: liquid

Transition from gel to sol is determined by comparing α to the critical relaxation exponent, n

\[n = 0.25 \pm 0.05 \text{ for our hydrogels} \]

Enzymatic Degradation in the Absence of Cells

Time cure superposition (TCS) was used to determine the critical relaxation exponent of gels with tethered TGF-β, tethered TNF-α, and no cytokines during enzymatic degradation.

Calculate critical relaxation exponent (n) using the following information:

\[r \propto t^{-\alpha} \]
\[b \propto \langle \Delta r^2 (\tau) \rangle \]

Using TCS, the following n values were determined for gels with tethered TNF-α, tethered TGF-β, and untreated PEG-N hydrogels. A t-test determined the difference in n between the 3 treatment groups is not statistically significant. This means that tethering cytokines to the network does not affect the material structure during enzymatic degradation.

Cell-Mediated Degradation

TNF-α and TGF-β alter cell-mediated degradation of the hydrogel network

Untreated Group Preliminary Results:

<table>
<thead>
<tr>
<th>Day after hMSC Encapsulation</th>
<th>Average Field of View</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.02151 ± 0.02455</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.02856 ± 0.02697</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.05753 ± 0.06933</td>
<td></td>
</tr>
</tbody>
</table>

Because the most activity was seen in day 4 after encapsulation, a plot is shown with radially averaged α values for a sample cell from day 4 in control treatment group (left). The circles are colored according to their respective averaged α values (see key below figure). These measurements show little remodeling directly around cells and increasing degradation as the distance from the cell increases.

Acknowledgments

- KC acknowledges the David and Lorraine Freed Undergraduate Research Symposium at Lehigh University
- KC acknowledges funding by the NSF on grant number CAREER CBET 1751057