Microbial Bio-Solubilization for Enhanced Phosphorus Recovery from Wastewater Biosolids Kaelyn Gormley '22 John Rybnik '23 Shane McCarthy '22 LAFAYETTE Advisor: Arthur Kney Ph.D.; Department of Civil and COLLEGE **Environmental Engineering**

Introduction

The Phosphorus Problem

•Phosphorus is a dwindling natural resource that is critical to global food supply •85-90% of mined phosphate is used for agricultural fertilizers

•Mining phosphorus introduces more reactive phosphorus leading to environmental degradation through eutrophication (Figure 1)

Time (hrs)	Unincubated	Incubated at 34°C		
24	Biosolids Control	Biosolids Control	Biosolids + Bacteria	Bacteria Control
48	Biosolids	Biosolids	Biosolids +	Bacteria

 Table 1: Experimental and control sample treatments

Methods

• Bacteria samples are pre-cultured. Samples of biosolids and bacteria are prepared and incubated under 8 different treatments (Table 1), then filtered

Concentration evaluated through

x 100

•Our research focuses on changing the current linear extraction process to a sustainable nutrient loop (Figure 2).

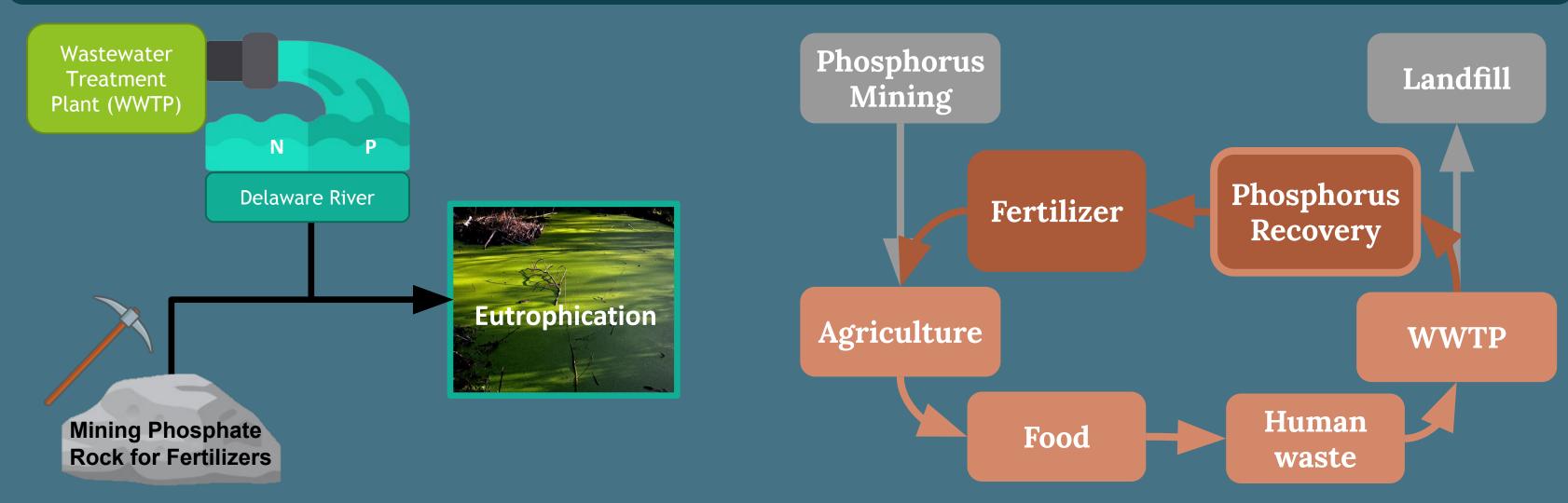


Figure 1: Sources of Eutrophication Our Research Aims to Mitigate

Water Grit Primary Secondary Aeration Tank Settling Tank Treatment Chamber Settling Tank Train Return Activated Sludge hosphorus Extraction Process Water Solids - Digester Gas Treatment Train (4) Effluent **Biosolids Liquor** Digester Biosolids Dewatering

Figure 2: Sustainable Phosphorus Cycle Management through Phosphorus Recovery

Goal of Research

Wastewater biosolids are typically incinerated and/or sent to landfills despite their richness in nutrients • The Bacillus species of bacteria is utilized to liberate phosphorus

	Control	Control	Dacteria	Control	Ion	Chroma
--	---------	---------	----------	---------	-----	--------

natography

Table 2: Phosphorus Concentrations for Various Testing Parameter

	Unincubated Samples	Samples Incubated at 34°C		
Time (hrs)	Biosolids Control (ppm P)	Biosolids Control (ppm P)	Bacteria and Biosolids (ppm P)	Bacteria Control (ppm P)
24	1.5	2.7	23.9	13.3
48	1.4	3.5	25.0	14.3

Biosolids and Bacteria ppm –Biosolids ppm –Bacteria ppm % P Increase by Bacteria = **Biosolids** ppm

Equation 1: Equation for Determining Percent Increase by Bacteria

Results

- The equation (Equation 1) is used to calculate % Phosphorus increase (Table 3) based on concentrations present in test samples (Table 2).
- The decrease in % P increase from 24 to 48 hrs is hypothesized to be due to

Figure 3: Typical Wastewater Treatment process train with Water Treatment Train and Solids Treatment Train highlighted (Adapted from Web Image)

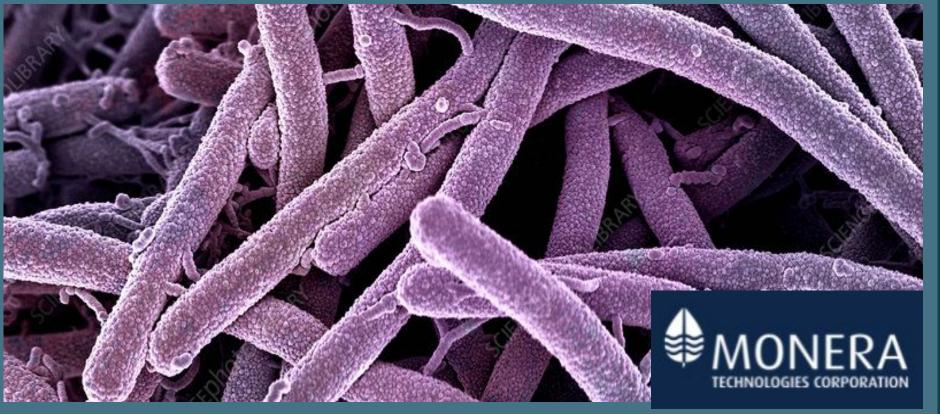
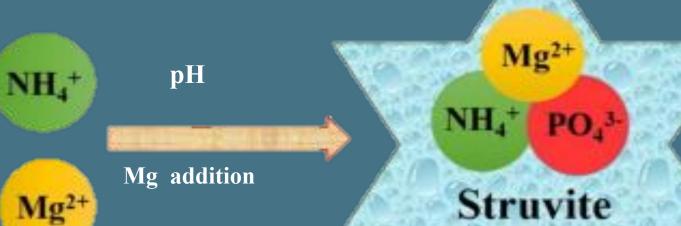
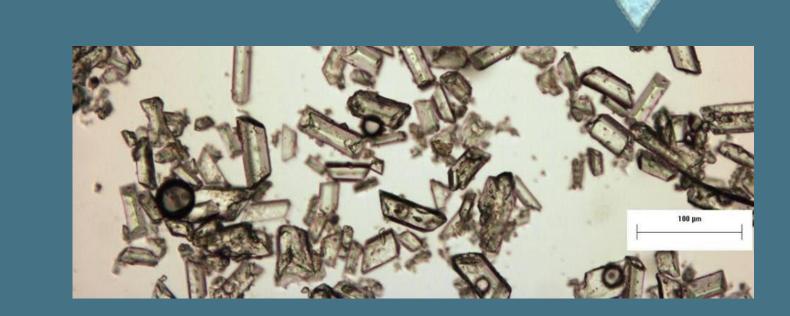


Figure 4: Three strains of bacillus bacteria (A1000, E400, and E923) being tested

from unavailable, insoluble structures bound in the biosolids before dewatering (Figure 3)

- After increasing the soluble phosphorus concentration, the biosolids are sent through a centrifuge in the WWTP (Figure 3)
- The supernatant fluid will be subjected to some method of phosphorus extraction to convert the phosphorus into a usable form (Figure 3)


Bio-solubilization with Bacillus


- *Bacillus* bacteria (Figure 4) produces low molecular weight organic acids (Gluconic, Lactic, Acetic, Succinic, and Propionic acids) which interact with insoluble/low solubility forms of phosphorus in the biosolids (Tricalcium Phosphate, Iron Phosphate, Aluminum Phosphate)
- These organic acids have hydroxyl and carboxyl groups that form chelates with

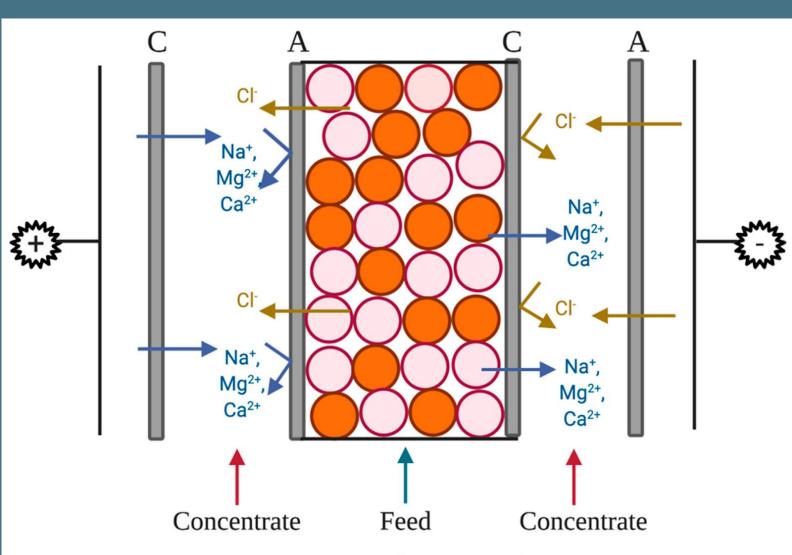

competition from the bacteria in the biosolids. The increased concentration from unincubated to incubated biosolids shows that heat also solubilizes phosphorus.

Table 3: Percent Phosphorus Concentration Increases

Time (hrs)	% P increase by Bacteria	% P increase by Bacteria and Biosolid Incubation
24	353	618
48	309	599

C - Cation exchange membrane A- Anion exchange membrane

the metal cations like iron which liberate the bound phosphorus

Gluconic Acid Iron

Chelate

PO

Progression of Research

Past Research

- Blind test with Monera Technologies using phosphorus solubilizing bacteria
- Moved from spectrophotometry to ion chromatography
- Narrowed range of incubation time (24 48hr), temperature not a significant variable (33 - 37°C)
- Inherent variability of biosolids leading to inconsistent results
- Identified need for pre-culturing bacteria and autoclaving laboratory equipment **Current Research**
- Use the *Bacillus* strain to solubilize phosphorus to enhance phosphorus recovery through ion exchange or another method
- Developing a process to effectively aerate bacteria during incubation

Figure 5: Diagram showing struvite precipitation process and examples of struvite crystals

Figure 6: Diagram demonstrating the method of selective ion exchange

Future Research

- Continued optimization: Aeration, quantifying bacteria, understanding competition Extraction methods: evaluate benefits of MAP precipitation (Figure 5) and ion exchange (Figure 6)
- Logistics of implementation, cost analysis

Acknowledgements

David and Lorraine Freed Undergraduate Research Symposium, Lehigh University CBL, ALLY, and EXCEL Scholars Programs Richard Bleam – Director of Technical Services at Monera Technologies Corporation Chuck Wilson & Alexandra Hoffman - Easton Wastewater Treatment Plant