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? Effect of boundaries

• Circulatory system and GI tract

are networks of cylindrical

channels which will contribute to

hydrodynamic interactions

? Effect of finite tail length

• Studies focusing on tail

geometry consider infinite

helical tails

? Multiple swimmers

• Interactions between multiple

swimmers may affect the

swimming trajectories
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➢ Carreau model converges to Newtonian results at 

n=1 as expected

➢ There is an optimum head size that maximizes 

velocity. 𝐔 = 𝐔(𝑅ℎ𝑒𝑎𝑑, 𝐶𝑢, 𝑛)
➢ Lower n (more shear-thinning) yields higher 

swimming velocities

➢ Tail efficiency is enhanced overall consistent with 

literature [2], but head efficiency (and total efficiency) 

enhancement is size dependent

➢ Both enhanced and reduced U may be obtained 

compared to swimming in Newtonian fluids

➢ Soft confinement effect is observed and contributes 

to enhanced velocity

➢ Swimmer geometry and actuation angular 

velocity can be tuned to obtain desired results
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Introduction and Background
WHAT WE KNOW WHAT IS MISSINGWHY STUDY MICROSWIMMERS?
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𝐯 = 𝐯𝒅 + 𝐔 + Ω × r

𝐯𝒅 =
𝜕𝐫

𝜕𝑡
= 𝐴𝜔 sin 𝑘𝛼𝑠 − 𝜔𝑡 , −𝐴𝜔 cos 𝑘𝛼𝑠 − 𝜔𝑡 , 0

𝐅𝒗𝒊𝒔 = 0׬
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𝐫 × 𝐟𝑣𝑖𝑠𝑑𝑠

𝐅𝒗𝒊𝒔 ∙ 𝐞𝑧 + 𝐹ℎ𝑒𝑎𝑑 = 0, 𝐹ℎ𝑒𝑎𝑑= 6𝜋𝜇𝑎ℎ𝑈
𝐌𝒗𝒊𝒔 ∙ 𝐞𝑧 +𝑀ℎ𝑒𝑎𝑑 = 0, 𝐹ℎ𝑒𝑎𝑑= −8𝜋𝜇𝑎ℎ
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Artificial bacteria are

strong candidates for

biomedical applications

such as drug delivery and

minimally invasive surgery

✓ Reduced side effects

✓ Faster recovery

? Swimming at small scales & in

biological fluids is challenging!

• 𝑅𝑒 =
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
=

𝜌𝑈𝐿

𝜇
→ 0

• Biological fluids are complex fluids

? Hydrodynamic interactions

• Slender body assumption used in Pak &

Lauga [1] does not take hydrodynamic

interactions between helical turns, and

tail and head into account

? Nonlinear effects

• Slender body theory assumes that

force and torque are linear

combinations of velocity and angular

velocity

? Effects of shear-thinning rheology

• Most bodily fluids are shear-thinning!

WHAT WE KNOW WHAT IS MISSINGWHY STUDY MICROSWIMMERS?


	Slide 1

