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Introduction and Background

WHAT IS MISSING

? Hydrodynamic interactions
* Slender body assumption used Iin Pak &

Lauga [1] does not take hydrodynamic
Interactions between helical turns, and
tall and head into account

? Nonlinear effects

WHY STUDY MICROSWIMMERS?

Artificial bacteria  are
strong candidates for
biomedical applications
such as drug delivery and
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» Carreau model converges to Newtonian results at
n=1 as expected

» There Is an optimum head size that maximizes
velocity. U = U(R}pqq, Cu, n)

» Lower n (more shear-thinning) yields higher
swimming velocities

» Tall efficiency Is enhanced overall consistent with
literature [2], but head efficiency (and total efficiency)
enhancement is size dependent

v Reduced side effects
v Faster recovery v=v;+U+QXr  Slender body theory assumes that
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» Both enhanced and reduced U may be obtained
compared to swimming in Newtonian fluids

» Soft confinement effect Is observed and contributes
to enhanced velocity

» Swimmer geometry and actuation angular
velocity can be tuned to obtain desired results
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