Underdog Achievement and Randomness in Team Ball Sports

Thaksheel Alleck, Roman Mitchell, Ori Remen, Tommaso Giovannelli, Luis Nunes Vicente

Industrial and Systems Engineering Department

Research Goal 1: Find the team ball sport with the highest underdog achievement (likelihood of weaker teams winning against stronger ones).

Data Collection: Match Scores and Team Rankings
We created a match score dataset by scraping Wikipedia pages using Python for 12 team ball sports.

For each edition of a competition:
- We computed a team ranking based on victories, losses, and ties.
- We aggregated past team rankings into a weighted ranking.

How to Identify Weak Teams?
Given a match between teams T1 and T2, T1 is a weak team if R(T1) ≤ R(T2) - Threshold
where R(·) denotes the position of a team in the weighted ranking. We refer to R(T1) - R(T2) as the rank difference between T1 and T2. For each sport, we set the Threshold to the median of the corresponding rank difference distribution.

How to Quantify Underdog Achievement?
For each team ball sport, based on the weighted ranking, we computed an underdog achievement score.

\[UAS_e = \frac{\text{Number of victories or draws by a weak team in edition } e}{\text{Number of matches with a weak team in edition } e} \]
\[UAS = \frac{1}{\text{Number of editions}} \sum_{e=1}^{E} (UAS_e) \]

95%-confidence intervals for the UAS value for each sport.

Soccer, water polo, field hockey, and ice hockey have the highest UAS, while lacrosse, roller hockey, and rugby have the lowest.

Research Goal 2: Investigate how underdog achievement is influenced by randomness factors that affect match outcomes in team ball sports.

Explaining Underdog Achievement with Our Randomness Model
We quantified average randomness factor values for each sport, resulting in a dataset containing 12 rows (one per sport) and 14 columns (one per factor). We performed a principal component analysis (PCA) and a correlation analysis to gain insights into the relationship between UAS and randomness factors.

PCA computes principal components (PCs), linear combinations of column values that preserve original dataset variability. PC1 and PC2 explain 56% of the variability.

Physical Environment Factors
- BL: Ball lightness
- BV: Ball velocity
- FS/BS: Field size/Ball size
- GS/BS: Goal size/Ball size
- BG: Ball geometry
- BB: Ball bounciness

Player Factors
- PP: Player powerfulness
- PBH: Player ball handling
- PBD: Player ball dispossession
- PI: Player inexperience

Team Factors
- NP/FS: Number of players/Field size
- GS/NPG: Goal size/# players who can effectively defend the goal
- SI: Scoring infrequency
- NRAM/NRPM: # rules about movement/ # rules that prevent movement

Observation 1. In soccer, PBH, BB, and GS/NPG values are high due to players using various body parts, a highly bouncy ball, and one player defending the goal.
Observation 2. For hockey sports, main randomness factors include PI, SI, FS/BS, BL, and BV. Players retire young, scoring frequency is lower than basketball, ball size is small (resulting in high FS/BS values), ball weight is light, and ball velocity is high.
Observation 3. For water polo, main randomness factors are PBD, due to low play time, and PP. Similar conclusions apply to handball, futsal, and basketball.
Observation 4. For rugby, key randomness factors include PP, BG, PI, and PBD, each at maximum values. BG's high value stems from the unique shape of rugby balls, increasing match outcome randomness. PI is high due to players retiring young. PBD's high value results from minimal play time and many players.

Engineering Impact.
- Design training strategies in sports to address randomness.
- Improve the profitability of the gaming industry (e.g., betting markets).
- Enhance sports performance analysis.

Future Work.
- Analyze professional leagues and collegiate competitions.
- Analyze team non-ball sports.
- Investigate the impact of referee errors in seasonal competitions and home vs away matches in seasonal competitions.

The heatmap on the right illustrates the Pearson correlation coefficient between each pair of factors, including UAS.

The factors with the highest impact on randomness are those with a positive correlation with UAS, i.e., GS/NPG, NP/FS, PBD, PBH, and BB.