
Template ID: assessingslate Size: 48x36

A Programming Platform for Numerical
Analysis and Data Visualization

Alex Clevenger and Michael Speckhart

Motivation

Results

Conclusion/Future WorkSolution

● Explore and promote the field of numerical analysis
● Provide a streamlined and performant solution for matrix operations and

linear system solving

● Compressed sparse vector format only stores nonzero values to improve
performance and memory allocation

● Iterative methods and Krylov methods to solve linear systems of sparse
matrices

● Parallelizing code with TBB to improve performance
● SIMD intrinsics to take advantage of hardware
● User-friendly API that allows users without programming knowledge to

use the functions smoothly

We live in a fast-paced world. This is a world where the pace is driven not
only by the competitive market, but also by our rapidly advancing
technologies. As a society, we are at the gateway of innovation with the rise
of artificial intelligence, quantum computing, medical imaging, and robotic
automation. The performance of these technologies all rely on one thing:
fast computation. Most modern services deal with an astronomical amount
of data, and organizing these data in specific matrix formats is becoming
an industry norm. We present a comprehensive, user-friendly platform for
performing numerical analysis and matrix operations. Advanced matrix
operations and numerical systems are at the forefront of our most
sophisticated advancements today, and there is much room for
improvement in optimizing these computations. Our software supports
matrix operations in both dense and sparse formats, and we offer multiple
approaches for solving linear systems. We aspire to develop a powerful
library that is capable of enhancing the technologies of today.

● Sparsity patterns significantly impact the
convergence of iterative solvers.

● Parallelizing components of iterative methods,
particularly with the Jacobi Method,
Gauss-Seidel, and SSOR, leads to enhanced
performance.

● Separating the client interface from iterative
solvers ensures performance maintenance
without significant overhead.

● Our project establishes a robust baseline for
seamlessly integrating more advanced
iterative solvers into a user-friendly
application, poised for future performance
optimization.

● The future team can explore additional Krylov
methods for solving linear systems and/or
delve into preconditioning techniques.

Abstract

This work is done under the CSE/CSB capstone project 2023. We
would like to thank Professor Arielle Carr, Professor Elroy Sturdivant,
and Professor Corey Montella for your supervision and guidance.

Server Architecture
● Our interface is made up of two

components:
○ A backend server written in C++ using the

Boost Asio framework that directly calls
the functions iterative solvers

○ A frontend web application written in
Javascript using React and Axios that
sends JSON http requests to the backend

● The service is hosted on Prof. Carr’s
Raspberry Pi

● We use an asynchronous, multi-threaded
method of accepting data and allowing
multiple connections

●

● The three graphs show our progression
of developing solvers for Ax=b
○ Right graph: Indirect methods are much faster than direct methods
○ Bottom left graph: Sparse data structures are more efficient in

processing power and memory than dense data structures
○ Bottom right graph: Iterative methods are embarrassingly parallel

● Parallel Sparse Gauss Seidel was 300,000x faster than Serial Dense
Gauss Elimination

3.50384(s)

0.01791(s)

10.6249(s)

Department of Computer Science and Engineering

