Parametric Valid Inequalities in Discrete Optimization

Suresh Bolusani
Ph.D. Advisor: Ted K. Ralphs

1COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

Multilevel/Multistage Mixed Integer Linear Optimization

Motivation
- Many real-world applications have:
 - Discrete/indivisible decisions
 - Multiple decision-makers
 - Multiple objectives
 - Multiple time periods

Application Areas
- Airline pricing and capacity allocation
- Natural gas shipping
- Road network construction
- Toll revenue maximization
- Hazardous material transportation
- Electricity demand management
- Chemical process optimization
- Gene-deletion strategy development
- Attacker-defender type problems
- Pollution control

Methodology
- Generalized Benders' decomposition framework
- Theory of Duality
- Algorithm for problems with two decision-makers
- Coding in an open-source optimization solver (C++)

Warm Starting for Mixed Integer Linear Optimization

Motivation
- Many applications require re-solving a problem:
 - Thousands of times per minute
 - Closely-related problems
 - Minor data changes

Application Areas
- Online optimization
- Routing
- Stochastic matching
- Resource allocation
- Optimization problem classes
- Bilevel optimization
- Multi-criteria optimization
- Stochastic optimization

Algorithms
- Decomposition
- Lagrangian relaxation

Methodology
- Solving a problem
- Gathering relevant information
- Reusing above information for solving another problem
- Coding in an open-source optimization solver (C/C++)