

# Sampled Quasi-Newton Methods for Deep Learning Albert S. Berahas, Majid Jahani, Martin Takáč

#### Abstract

- $\checkmark$  Proposed two novel quasi-Newton methods that use sampling to construct Hessian approximations
- $\checkmark$  Proved theoretical guarantees of the proposed methods
- $\checkmark$  Showed the practical performance of the methods on deep learning tasks
- $\checkmark$  Discussed the implementation costs of the sampled quasi-Newton methods and compare them to the classical variants

#### Introduction

$$\min_{w \in \mathbb{R}^d} F(w) := \frac{1}{n} \sum_{i=1}^n f(w; x^i, y^i) = \frac{1}{n} \sum_{i=1}^n f_i(w)$$

- n and d are large, and F(.) is nonconvex
- First-order methods converge very slowly, and sometimes even fail to achieve 100% accuracy
- Methods that use the true Hessian are always able to achieve 100% in a few iterations; however, they are expensive
- The curvature information captured by classical quasi-Newton may not be adequate or useful
- Our idea: *forget* past curvature information and *sample* new curvature pairs at every iteration

#### Literature Review

- BFGS/LBFGS : Broyden, 1967; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970, Nocedal, 1980; Liu & Nocedal, 1989; Gao and Goldfarb, 2018 Liu & Nocedal, 1989
- SR1/LSR1 : Conn et al., 1991; Khalfan et al., 1993; Byrd et al., 1996; Lu, 1996; Brust et al., 2017;
- Stochastic QN : Schraudolph et al., 2007; Mokhtari & Ribeiro, 2015; Byrd et al., 2016; Berahas et al., 2016; Curtis, 2016; Gower et al. 2016;

#### **Quasi-Newton Methods**



### Sampled Quasi-Newton Methods **Can one capture better curvature via sampling?**



Comparison of the eigenvalues of SR1, LSR1 and S-LSR1 at points A, B and C for a toy classification problem.



- Sample points around the current iterate along random directions  $\sigma_i$
- Option I requires m gradient evaluations
- Option I is significantly more sensitive to the choice of the sampling radius
- Option II is scale invariant and needs a single Hessian matrix product
- Option II, y curvature pairs can be calculated simultaneously and efficiently on a GPU



(2)

# Sampled LBFGS & Sampled LSR1

| Algorithm 2 Sampled LBFGS (S-LBFGS)                                    |
|------------------------------------------------------------------------|
| <b>Input:</b> $w_0$ (initial iterate), $m$ (memory), $r$ (sampling ra- |
| dius).                                                                 |
| 1: for $k = 0, 1, 2, do$                                               |
| 2: Compute new $(S_k, Y_k)$ pairs via Algorithm 1                      |
| 3: Compute $p_k = -\boldsymbol{H}_k \nabla F(w_k)$                     |
| 4: Choose the steplength $\alpha_k > 0$                                |
| 5: Set $w_{k+1} = w_k + \alpha_k p_k$                                  |
| 6: end for                                                             |
|                                                                        |

Key diffrentiating elements with classical variants: (1) the way in which curvature pairs are created; (2) the location in the algorithm where the curvature pairs are constructed (i.e., even the first step is quasi-Newton)

#### **Convergence Analysis** Sampled LBFGS - Strongly Convex Functions

**Assumption 1.** F is twice continuously differentiable.

Assumption 2. There exist positive constants  $\mu$  and L such that  $\mu I \preceq \nabla^2 F(w) \preceq LI$ , for all  $w \in \mathbb{R}^d$ .

**Lemma 3.** If Assumptions 1 and 2 hold, there exist constants  $0 < \mu_1 \leq \mu_2$  such that the inverse Hessian approximations  $\{H_k\}$  generated by Algorithm 2 satisfy,

 $\mu_1 I \preceq \mathbf{H}_k \preceq \mu_2 I, \qquad for \ k = 0, 1, 2, \dots$ 

10:

11:

12: **end for** 

**Theorem 4.** Suppose that Assumptions 1 and 2 hold, and let  $F^* = F(w^*)$ , where  $w^*$  is the minimizer of F. Let  $\{w_k\}$  be the iterates generated by Algorithm 2, where  $0 < \alpha_k = \alpha \leq \frac{\mu_1}{\mu^2 L}$ , and  $w_0$  is the starting point. Then for all  $k \geq 0$ ,

 $F(w_k) - F^* \le (1 - \alpha \mu \mu_1)^k [F(w_0) - F^*].$ 

#### Sampled LBFGS - Nonconvex Functions

**Assumption 5.** The function F(w) is bounded below by a scalar  $\hat{F}$ . **Assumption 6.** The gradients of F are L-Lipschitz continuous for all  $w \in \mathbb{R}^d$ .

**Lemma 7.** Suppose that Assumptions 1 and 6 hold. Let  $\{H_k\}$  be the inverse Hessian approximations generated by Algorithm 2, with the modification that the inverse approximation update is performed using only curvature pairs that satisfy (1), for some  $\epsilon > 0$ , and  $H_k = I$  if no curvature pairs satisfy (1). Then, there exist constants  $0 < \mu_1 \leq \mu_2$  such that

 $\mu_1 I \preceq \mathbf{H}_k \preceq \mu_2 I, \quad \text{for } k = 0, 1, 2, \dots$ 

**Theorem 8.** Suppose that Assumptions 1, 5 and 6 hold. Let  $\{w_k\}$  be the iterates generated by Algorithm 2, with the modification that the inverse Hessian approximation update is performed using only curvature pairs that satisfy (1), for some  $\epsilon > 0$ , and  $H_k = I$  if no curvature pairs satis fy (1), where  $0 < \alpha_k = \alpha \leq \frac{\mu_1}{\mu^2 L}$ , and  $w_0$  is the starting point. Then,  $\lim_{k \to \infty} \|\nabla F(w_k)\| = 0$ , and, moreover, for any  $\tau > 1$ ,

$$\frac{1}{\tau} \sum_{k=0}^{\tau-1} \|\nabla F(w_k)\|^2 \le \frac{2[F(w_0) - \hat{F}(w_k)]}{\alpha \mu_1 \tau}$$

#### Sampled LSR1

Assumption 9. For all k,  $m_k(0) - m_k(p_k) \ge \xi \|\nabla F(w_k)\| \min \left[\frac{\|\nabla F(w_k)\|}{\beta_k}, \Delta_k\right]$ , where  $\xi \in (0, 1)$ and  $\beta_k = 1 + \|B_k\|$ .

**Lemma 10.** Suppose that Assumptions 1, 6 and 9 hold. Let  $\{B_k\}$  be the Hessian approximations generated by Algorithm 3, with the modification that the approximation update is performed using only curvature pairs that satisfy (2), for some  $\epsilon > 0$ , and  $B_k = I$  if no curvature pairs satisfy (2). Then, there exists a constant  $\nu_2 > 0$  such that

 $||B_k|| \le \nu_2, \quad for \ k = 0, 1, 2, \dots$ 

**Theorem 11.** Suppose that Assumptions 1, 5, 6 and 9 hold. Let  $\{w_k\}$  be the iterates generated by Algorithm 3, with the modification that the Hessian approximation update is performed using only curvature pairs that satisfy 2, for some  $\epsilon > 0$ , and  $B_k = I$  if no curvature pairs satisfy (2). Then,  $\lim_{k\to\infty} \|\nabla F(w_k)\| = 0$ .

Algorithm 3 Sampled LSR1 (S-LSR1) **Input:**  $w_0$  (initial iterate),  $\Delta_0$  (initial trust region radius) m (memory), r (sampling radius). 1: for k = 0, 1, 2, ... do Compute new  $(S_k, Y_k)$  pairs via Algorithm 1 Compute  $B_{k+1}$ Compute  $p_k$  by solving the TR subproblem Compute  $\rho_k = \frac{F(w_k) - F(w_k + p_k)}{m_k(0) - m_k(p_k)}$ if  $\rho_k \geq \eta_1$  then Set  $w_{k+1} = w_k + p_k$ Set  $w_{k+1} = w_k$ end if  $\Delta_{k+1} = \operatorname{Adjust} \operatorname{trust-region} \operatorname{radius}(\Delta_k, \rho_k)$ 

 $\xrightarrow{\tau \to \infty} 0$ 

## **Distributed Computing**



Performance (Images/second) as a function of batch size for different DNN models and operations on a single P100 GPU (left). Time (seconds) to complete 1 epoch of SG and to perform 1 iteration of S-LSR1 on a dataset with 1M images using varying number of MPI processes.

#### **Comparison of Computational Cost and Storage**

• Number of line search iterations and CG iterations are denoted as  $\kappa_{ls}$  and  $\kappa_{tr}$ , respectively

| $\mathbf{method}$ | computational cost               | stor            |
|-------------------|----------------------------------|-----------------|
| BFGS              | $nd + d^2 + \kappa_{ls}nd$       | $d^2$           |
| LBFGS             | $nd + 4md + \kappa_{ls}nd$       | $\overline{2m}$ |
| S-LBFGS           | $nd + mnd + 4md + \kappa_{ls}nd$ |                 |
| SR1               | $nd + d^2 + nd + \kappa_{tr}d^2$ | $d^2$           |
| LSR1              | $nd + nd + \kappa_{tr}md$        | 2m              |
| S-LSR1            | $nd + mnd + nd + \kappa_{tr}md$  |                 |

#### Numerical Results **Toy Classification Problem**

- Two classes each with 50 data points
- Trained three FCNNs small, medium and large – with sigmoid activation functions and 4 hidden layers



problems. Networks: small (left); medium (middle); large (right).

#### **MNIST**



**Future Work** 

- Conduct a large scale numerical investigation of the proposed methods

#### References

- munication Efficient Distributed SR1. arXiv preprint arXiv:1905.13096v1.
- arXiv preprint arXiv:1901.09997.
- Code: https://github.com/OptMLGroup/SQN



- - The per iteration cost of the sampled quasi-Newton methods is **COMPARABLE** to that of the classical limited memory variants

storage requirements

• The sampled quasi-Newton methods have  $\mathbf{NO}$ 

• In  $m \ll n, d$  regime, the computational cost of the methods is  $\mathcal{O}(nd)$ 



| network | structure       | d   |
|---------|-----------------|-----|
| small   | 2-2-2-2-2       | 36  |
| medium  | 2-4-8-8-4-2     | 176 |
| large   | 2-10-20-20-10-2 | 908 |

Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on toy classification

• Extend our proposed methods to the stochastic setting (inexact gradients and/or Hessians) • Extend and modify our methods to incorporate adaptive batch-sizes and memory

• Berahas, A. S., Jahani, M., & Takáč, M. (2019). Quasi-Newton Methods for Deep Learning. OPT2019.

• Jahani, M., Nazari, M., rusakov, S., Berahas, A. S., & Takáč, M. (2019). Scaling Up Quasi-Newton Algorithms: Com-

• Berahas, A. S., Jahani, M., & Takáč, M. (2019). Quasi-Newton Methods for Deep Learning: Forget the Past, Just Sample.