
Sampled Quasi-Newton Methods for Deep Learning
Albert S. Berahas, Majid Jahani, Martin Takáč Lehigh University, Bethlehem, PA

Abstract
X Proposed two novel quasi-Newton methods that use sampling to construct

Hessian approximations
X Proved theoretical guarantees of the proposed methods
X Showed the practical performance of the methods on deep learning tasks
X Discussed the implementation costs of the sampled quasi-Newton methods and

compare them to the classical variants

Introduction

min
w∈Rd

F (w) :=
1

n

n∑
i=1

f (w;xi, yi) =
1

n

n∑
i=1

fi(w)

• n and d are large, and F (.) is nonconvex
• First-order methods converge very slowly, and sometimes even

fail to achieve 100% accuracy
•Methods that use the true Hessian are always able to achieve

100% in a few iterations; however, they are expensive
• The curvature information captured by classical quasi-Newton

may not be adequate or useful
•Our idea: forget past curvature information and sample

new curvature pairs at every iteration
0 100 200 300 400 500

Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Algorithm
GD
Adam
BFGS
LBFGS
SR1
LSR1
Newton-TR(CG)
Newton-TR(Exact)

Literature Review
•BFGS/LBFGS : Broyden, 1967; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970, Nocedal, 1980; Liu

& Nocedal, 1989; Gao and Goldfarb, 2018 Liu & Nocedal, 1989
• SR1/LSR1 : Conn et al., 1991; Khalfan et al., 1993; Byrd et al., 1996; Lu, 1996; Brust et al., 2017;
• Stochastic QN : Schraudolph et al., 2007; Mokhtari & Ribeiro, 2015; Byrd et al., 2016; Berahas et

al., 2016; Curtis, 2016; Gower et al. 2016;

Quasi-Newton Methods
BFGS and LBFGS

wk+1 = wk − αkHk∇F (wk),

where Hk+1 = V Tk HkVk + ρksks
T
k

and ρk =
1

yTk sk
, Vk = I − ρkyksTk

and the curvature pairs (sk, yk) :

sk = wk − wk−1,

yk = ∇F (wk)−∇F (wk−1)

BFGS condition:

sTy ≥ ε‖s‖2 (1)

SR1 and LSR1

wk+1 = wk + pk,

where pk is the minimizer of the following sub-
problem

minp mk(p) = F (wk) +∇F (wk)Tp+ 1
2p
TBkp,

s.t. ‖p‖ ≤ ∆k,
∆k is the trust region and Bk is the SR1 Hessian
approximation computed as

Bk+1 = Bk +
(yk−Bksk)(yk−Bksk)

T

(yk−Bksk)Tsk
.

SR1 condition:

|sT (y −Bs)| ≥ ε‖s‖‖y −Bs‖ (2)

Sampled Quasi-Newton Methods
Can one capture better curvature via sampling?

0 5 10 15 20 25 30 35 40
Iterations

10−2

10−1

No
rm

 G
ra
d

A

C

B

SR1

0 5 10 15 20 25 30 35

10−18

10−15

10−12

10−9

10−6

10−3

100
Point A

Full Hessian(+)
Full Hessian(-)
LSR1
SR1
S-LSR1

0 5 10 15 20 25 30 35

10−19

10−16

10−13

10−10

10−7

10−4

10−1

Point B

Full Hessian(+)
Full Hessian(-)
LSR1
SR1
S-LSR1

0 5 10 15 20 25 30 35

10−18

10−15

10−12

10−9

10−6

10−3

100

Point C

Full Hessian(+)
Full Hessian(-)
LSR1
SR1
S-LSR1

Comparison of the eigenvalues of SR1, LSR1 and S-LSR1 at points A, B and C for a toy classification problem.

Algorithm 1 Compute new (S, Y) curvature
pairs

1: Input: w (iterate), m (memory), r (sampling radius),
S = [], Y = []

2: Compute ∇F (w)
3: for i = 1, 2, ...,m do
4: Sample a random direction of unit length σi
5: Sample point w̄ = w + rσi
6: Set s = w − w̄ and

7: y =

{
∇F (w)−∇F (w̄), Option I

∇2F (w)s, Option II

8: Set S = [S s] and Y = [Y y]
9: end for

10: Output: S, Y

• Sample points around the current iterate along
random directions σi

•Option I requires m gradient evaluations

•Option I is significantly more sensitive to the
choice of the sampling radius

•Option II is scale invariant and needs a sin-
gle Hessian matrix product

•Option II, y curvature pairs can be calcu-
lated simultaneously and efficiently on
a GPU

Sampled LBFGS & Sampled LSR1

Algorithm 2 Sampled LBFGS (S-LBFGS)
Input: w0 (initial iterate), m (memory), r (sampling ra-
dius).

1: for k = 0, 1, 2, ... do
2: Compute new (Sk, Yk) pairs via Algorithm 1
3: Compute pk = −Hk∇F (wk)
4: Choose the steplength αk > 0
5: Set wk+1 = wk + αkpk
6: end for

Key diffrentiating elements with classical variants:
(1) the way in which curvature pairs are created;
(2) the location in the algorithm where the curva-
ture pairs are constructed (i.e., even the first step is
quasi-Newton)

Algorithm 3 Sampled LSR1 (S-LSR1)
Input: w0 (initial iterate), ∆0 (initial trust region radius),
m (memory), r (sampling radius).

1: for k = 0, 1, 2, ... do
2: Compute new (Sk, Yk) pairs via Algorithm 1
3: Compute Bk+1

4: Compute pk by solving the TR subproblem
5: Compute ρk = F (wk)−F (wk+pk)

mk(0)−mk(pk)

6: if ρk ≥ η1 then
7: Set wk+1 = wk + pk
8: else
9: Set wk+1 = wk

10: end if
11: ∆k+1 = Adjust trust-region radius(∆k, ρk)
12: end for

Convergence Analysis
Sampled LBFGS - Strongly Convex Functions

Assumption 1. F is twice continuously differentiable.

Assumption 2. There exist positive constants µ and L such that µI � ∇2F (w) � LI, for all
w ∈ Rd.

Lemma 3. If Assumptions 1 and 2 hold, there exist constants 0 < µ1 ≤ µ2 such that the inverse
Hessian approximations {Hk} generated by Algorithm 2 satisfy,

µ1I � Hk � µ2I, for k = 0, 1, 2,

Theorem 4. Suppose that Assumptions 1 and 2 hold, and let F ? = F (w?), where w? is the
minimizer of F . Let {wk} be the iterates generated by Algorithm 2, where 0 < αk = α ≤ µ1

µ22L
,

and w0 is the starting point. Then for all k ≥ 0,

F (wk)− F ? ≤
(
1− αµµ1

)k
[F (w0)− F ?] .

Sampled LBFGS - Nonconvex Functions

Assumption 5. The function F (w) is bounded below by a scalar F̂ .

Assumption 6. The gradients of F are L-Lipschitz continuous for all w ∈ Rd.

Lemma 7. Suppose that Assumptions 1 and 6 hold. Let {Hk} be the inverse Hessian approxi-
mations generated by Algorithm 2, with the modification that the inverse approximation update
is performed using only curvature pairs that satisfy (1), for some ε > 0, and Hk = I if no
curvature pairs satisfy (1). Then, there exist constants 0 < µ1 ≤ µ2 such that

µ1I � Hk � µ2I, for k = 0, 1, 2,

Theorem 8. Suppose that Assumptions 1, 5 and 6 hold. Let {wk} be the iterates generated by
Algorithm 2, with the modification that the inverse Hessian approximation update is performed
using only curvature pairs that satisfy (1), for some ε > 0, and Hk = I if no curvature pairs sat-
isfy (1), where 0 < αk = α ≤ µ1

µ22L
, and w0 is the starting point. Then, limk→∞ ‖∇F (wk)‖ = 0,

and, moreover, for any τ > 1,

1

τ

τ−1∑
k=0

‖∇F (wk)‖2 ≤ 2[F (w0)− F̂]

αµ1τ

τ→∞−−−−→ 0.

Sampled LSR1

Assumption 9. For all k, mk(0) − mk(pk) ≥ ξ‖∇F (wk)‖min
[
‖∇F (wk)‖

βk
,∆k

]
, where ξ ∈ (0, 1)

and βk = 1 + ‖Bk‖.

Lemma 10. Suppose that Assumptions 1, 6 and 9 hold. Let {Bk} be the Hessian approxima-
tions generated by Algorithm 3, with the modification that the approximation update is performed
using only curvature pairs that satisfy (2), for some ε > 0, and Bk = I if no curvature pairs
satisfy (2). Then, there exists a constant ν2 > 0 such that

‖Bk‖ ≤ ν2, for k = 0, 1, 2,

Theorem 11. Suppose that Assumptions 1, 5, 6 and 9 hold. Let {wk} be the iterates generated
by Algorithm 3, with the modification that the Hessian approximation update is performed using
only curvature pairs that satisfy 2, for some ε > 0, and Bk = I if no curvature pairs satisfy
(2). Then, limk→∞‖∇F (wk)‖ = 0.

Distributed Computing

 16 32 64 128 256 512 1024 2048
batch_size

102

103

104

105

Im
ag

es
 /

se
co

nd

Performance on P100 GPU, single precision

model
vgg a
LeNet
alexnet v2
method
Function Value
Hessian Vector
Gradient

 4 8 16 32 64 128
MPI

101

102

103

104

tim
e

[s
ec

on
ds

]

alexnet v2
method
SGD 16
SGD Default
S-LSR1

 4 8 16 32 64 128
MPI

100

101

102

103

tim
e

[s
ec

on
ds

]

LeNet
method
SGD 16
SGD Default
S-LSR1

 4 8 16 32 64 128
MPI

102

103

104

tim
e

[s
ec

on
ds

]

vgg a
method
SGD 16
SGD Default
S-LSR1

Performance (Images/second) as a function of batch size for different DNN models and operations on a
single P100 GPU (left). Time (seconds) to complete 1 epoch of SG and to perform 1 iteration of S-LSR1
on a dataset with 1M images using varying number of MPI processes.

Comparison of Computational Cost and Storage
•Number of line search iterations and CG itera-

tions are denoted as κls and κtr, respectively

method computational cost storage

BFGS nd + d2 + κlsnd d2

LBFGS nd + 4md + κlsnd 2md
S-LBFGS nd + mnd + 4md + κlsnd -
SR1 nd + d2 + nd + κtrd

2 d2

LSR1 nd + nd + κtrmd 2md
S-LSR1 nd + mnd + nd + κtrmd -

• The sampled quasi-Newton methods have NO
storage requirements

• The per iteration cost of the sampled quasi-
Newton methods is COMPARABLE to
that of the classical limited memory variants

• In m� n, d regime, the computational cost of
the methods is O(nd)

Numerical Results
Toy Classification Problem

• Two classes each with 50 data points
• Trained three FCNNs – small, medium

and large – with sigmoid activation
functions and 4 hidden layers

0.0 0.2 0.4 0.6 0.8 1.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Class 1
Class 2

network structure d

small 2-2-2-2-2-2 36
medium 2-4-8-8-4-2 176
large 2-10-20-20-10-2 908

20 100 200 500 1000
Budget

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

20 100 200 500 1000
Budget

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu
ra
cy

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

20 100 200 500 1000
Budget

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 200 400 600 800 1000
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy Algorithm

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on toy classification
problems. Networks: small (left); medium (middle); large (right).

MNIST

0 50 100 150 200 250 300 350 400
Epochs

0.2

0.4

0.6

0.8

1.0

Tr
ai
n
Ac

cu
ra
cy

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 50 100 150 200 250 300 350 400
Epochs

0.2

0.4

0.6

0.8

1.0

Te
st
 A
cc
ur
ac
y

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

0 50 100 150 200 250 300 350 400
Epochs

0.0

0.5

1.0

1.5

2.0

2.5

Ob
j F
un

GD
ADAM
BFGS
LBFGS
SR1
LSR1
S-LSR1
S-LBFGS

Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on MNIST problems.

Future Work
• Extend our proposed methods to the stochastic setting (inexact gradients and/or Hessians)

• Extend and modify our methods to incorporate adaptive batch-sizes and memory

• Conduct a large scale numerical investigation of the proposed methods

References
• Berahas, A. S., Jahani, M., & Takáč , M. (2019). Quasi-Newton Methods for Deep Learning. OPT2019.

• Jahani, M., Nazari, M., rusakov, S., Berahas, A. S., & Takáč , M. (2019). Scaling Up Quasi-Newton Algorithms: Com-
munication Efficient Distributed SR1. arXiv preprint arXiv:1905.13096v1.

• Berahas, A. S., Jahani, M., & Takáč , M. (2019). Quasi-Newton Methods for Deep Learning: Forget the Past, Just Sample.
arXiv preprint arXiv:1901.09997.

• Code: https://github.com/OptMLGroup/SQN

maj316@lehigh.edu

1

https://github.com/OptMLGroup/SQN

	Introduction
	Literature Review
	Quasi-Newton Methods
	BFGS and LBFGS
	SR1 and LSR1

	Sampled Quasi-Newton Methods
	Can one capture better curvature via sampling?

	 Sampled LBFGS & Sampled LSR1
	Convergence Analysis
	Sampled LBFGS - Strongly Convex Functions
	Sampled LBFGS - Nonconvex Functions
	Sampled LSR1

	Distributed Computing
	Comparison of Computational Cost and Storage
	Numerical Results
	Toy Classification Problem
	MNIST

	Future Work
	References

