Abstract
$\checkmark$ Proposed two novel quasi-Newton methe that use sampling to construt Hessian approximations
Proved theoretical guarantees of the proposed methods
$\checkmark$ Discussed the implementation costs of the sampled quasi-Newton methods and compare them to the classical variants

## Introduction

$$
\min _{w \in \mathbb{R}^{d}} F(w):=\frac{1}{n} \sum_{i=1}^{n} f\left(w ; x^{i}, y^{i}\right)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(w)
$$

- $n$ and $d$ are large, and $F($.$) is nonconvex$
- First-order methods converge very slowly, and sometimes even fail to achieve $100 \%$ accuracy
$100 \%$ in a few iterations hewesser they always able to achieve
The curvature information captured by classical cua
may not be adequate or useful
Our idea: forget past curvature information and sample new curvature pairs at every iteration


## Literature Review

- BFGS/LBFGS : Broyden, 1967; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970, Nocedal, 1980; Liu \& Nocedal, 1989; Gao and Goldfarb, 2018 Liu \& Nocedal, 1989
- SR1/LSR1 : Conn et al., 1991; Khalfan et al., 1993; Byrd et al., 1996; Lu, 1996; Brust et al., 2017; - Stochastic QN : Schraudolph et al., 2007; Mokhtari \& Ribeiro, 2015; Byrd et al., 2016; Berahas et al., 2016; Curtis, 2016; Gower et al. 2016


## Quasi-Newton Methods

## BFGS and LBFGS

$w_{k+1}=w_{k}-\alpha_{k} H_{k} \nabla F\left(w_{k}\right)$,
where $H_{k+1}=V_{k}^{T} H_{k} V_{k}+\rho_{k} s_{k} s_{k}^{T}$ and $\rho_{k}=\frac{1}{y_{k}^{T} s_{k}}, V_{k}=I-\rho_{k} y_{k} s_{k}^{T}$ and the curvature pairs $\left(s_{k}, y_{k}\right)$ :

SR1 and LSR1 where $p_{k}$
problem

$$
\begin{aligned}
& s_{k}=w_{k}-w_{k-1}, \\
& u_{k}=\nabla F\left(w_{k}\right)-\Sigma
\end{aligned}
$$

$$
\begin{aligned}
& s_{k}=\nabla F F\left(w_{k}\right)-\nabla F\left(w_{k-1}\right) \\
& y_{k}=\nabla
\end{aligned}
$$

BFGS condition:
$s^{T} y \geq \epsilon\|s\|^{2}$
$w_{k+1}=w_{k}+p_{k}$,
where $p_{k}$ is the minimizer of the following sub$\min _{p} m_{k}(p)=F\left(w_{k}\right)+\nabla F\left(w_{k}\right)^{T} p+\frac{1}{2} p^{T} B_{k} p$, s.t. $\quad\|p\| \leq \Delta_{k}$,
$\Delta_{k}$ is the trust region and $B_{k}$ is the SR1 Hessian approximation computed as
$B_{k+1}=B_{k}+\frac{\left(k_{k}-b_{k} s_{k}\right)\left(y_{k}-B_{k} s_{k}\right)^{T}}{\left(y_{k}-B_{k} s_{k} T^{T} T_{s k}\right.}$ SR1 condition:
$\left|s^{T}(y-B s)\right| \geq \epsilon\|s\|\|y-B s\|$
Sampled Quasi-Newton Methods
Can one capture better curvature via sampling?


Comparison of the eigenvalues of SR1, LSR1 and S-LSR1 at points A, B and C for a toy classification problem


- Sample points around the current iterate along random directions $\sigma_{i}$
- Option I requires $m$ gradient evaluations
- Option I is significantly more sensitive to the choice of the sampling radius - Option II is scale invariant and needs a single Hessian matrix product
- Option II, y curvature pairs can be calcua GPU


## Sampled LBFGS \& Sampled LSR1

| gorithm 2 Sam | Algorithm 3 Sampled LSR1 (S-LSR1) |
| :---: | :---: |
| Input: $w_{0}$ (initial iterate), $m$ (memory), $r$ (sampling radius). | Input: $w_{0}$ (initial iterate), $\Delta_{0}$ (initial trust region radi $m$ (memory), $r$ (sampling radius) |
| 1: $\operatorname{for} k=0,1,2, \ldots$ do | 1: for $k=0,1,2, \ldots$ |
| 2: Compute new ( $S_{k}, Y_{k}$ ) pairs via Algorithm [1] | 2: Compute new ( $S_{k}$, |
|  | C |
| 4. Choose the steplength $\alpha_{k}>0$ | $\begin{array}{ll}\text { 4. } \\ \text { 5. } & \text { Compute } \\ \text { Compute }\end{array}$ |
| ${ }^{\text {6: }}$ end for | ${ }_{\text {if }}{ }_{\rho_{k}}$ |
| diffrentiati | 8. else |
| (1) the way in which curvature pairs are created | 9: |
| e location in the algorithm where the cur |  |
| airs are constructed (i.e., even the first step | ${ }^{12}$ en |
| Convergence Analysis |  |
|  |  |
| Sampled LBFGS - Strongly Convex Functions |  |
| Assumption 1.F is twice continuously differentiable. |  |
|  |  |
| Lemma 3. If Assumptions 1 and 2 hold, there exist constants $0<\mu_{1} \leq \mu_{2}$ such that the inverse Hessian approximations $\left\{H_{k}\right\}$ generated by Algorithm 2 satisfy, |  |
|  |  |
| $\mu_{1} I \preceq H_{k} \preceq \mu_{2} I, \quad$ for $k=0,1,2, \ldots$ |  |
| Theorem 4. Suppose that Assumptions 1 and 2 hold, and let $F^{\star}=F\left(w^{\star}\right)$, where $w^{\star}$ is the minimizer of $F$. Let $\left\{w_{k}\right\}$ be the iterates generated by Algorithm 2, where $0<\alpha_{k}=\alpha \leq \frac{\mu_{1}}{\mu_{2}^{2}}$, and $w_{0}$ is the starting point. Then for all $k \geq 0$, |  |
|  |  |
|  |  |
| $F\left(w_{k}\right)-F^{\star} \leq\left(1-\alpha \mu \mu_{1}\right)^{k}\left[F\left(w_{0}\right)-F^{\star}\right]$ |  |

## Sampled LBFGS - Nonconvex Functions

Assumption 5. The function $F(w)$ is bounded below by a scalar $\widehat{F}$
Assumption 6. The gradients of $F$ are $L$-Lipschitz continuous for all $w \in \mathbb{R}^{d}$.
Lemma 7. Suppose that Assumptions 1 and 6 hold. Let $\left\{H_{k}\right\}$ be the inverse Hessian approximations generated by Algorithm 园, with the modification that the inverse approximation update is performed using only curvature pairs that satisfy (1), for some $\epsilon>0$, and $H_{k}=I$ if no curvature pairs satisfy (1). Then, there exist constants $0<\mu_{1}<\mu_{2}$ such that

$$
\mu_{1} I \preceq H_{k} \preceq \mu_{2} I, \quad \text { for } k=0,1,2, . .
$$

Theorem 8. Suppose that Assumptions 1, [5 and $\left[6\right.$ hold. Let $\left\{w_{k}\right\}$ be the iterates generated by Algorithm ${ }^{2}$, with the modification that the inverse Hessian approximation update is performed using only curvature pairs that satisfy (1), for some $\epsilon>0$, and $H_{k}=1$ if no curvature pairs sat isfy (1), where $0<\alpha_{k}=\alpha \leq \frac{\mu_{1}}{\mu_{2}^{\prime} L}$, and $w_{0}$ is the starting point. Then, $\lim _{k \rightarrow \infty}\left\|\nabla F\left(w_{k}\right)\right\|=0$, and, moreover, for any $\tau>1$

$$
\frac{1}{\tau} \sum_{k=0}^{\tau-1}\left\|\nabla F\left(w_{k}\right)\right\|^{2} \leq \frac{2\left[F\left(w_{0}\right)-\widehat{F}\right]}{\alpha \mu_{1} \tau} \xrightarrow{\tau \rightarrow \infty} 0 .
$$

Sampled LSR1
Assumption 9. For all $k$, $m_{k}(0)-m_{k}\left(p_{k}\right) \geq \xi\left\|\nabla F\left(w_{k}\right)\right\| \min \left[\frac{\left\|\nabla F\left(w_{k}\right)\right\|}{\beta_{k}}, \Delta_{k}\right]$, where $\xi \in(0,1)$ and $\beta_{k}=1+\left\|B_{k}\right\|$.
Lemma 10. Suppose that Assumptions $1,\left[6\right.$ and 9 hold. Let $\left\{B_{k}\right\}$ be the Hessian approximations generated by Algorithm [3, with the modification that the approximation update is performed
using only curvature pairs that satisfy using only curvature pairs that satisfy (2), for some $\epsilon>0$,
satisfy (2). Then, there exists a constant $\nu_{2}>0$ such that

$$
\left\|B_{k}\right\| \leq \nu_{2}, \quad \text { for } k=0,1,2,
$$ Theorem 11. Suppose that Assumptions (1, [5, [6 and 9 hold. Let $\left\{w_{k}\right\}$ be the iterates generated by Algorithm 3, with the modification that the Hessian approximation upate is performed using

only curvature pairs that satisfy 2 , for some $\epsilon>0$, and $B_{k}=I$ if no curvature pairs satisfy only curvature pairs that satissy
(2). Then, $\lim _{k \rightarrow \infty}\left\|\nabla F\left(w_{k}\right)\right\|=0$.

## Distributed Computing

## 等

Performance (Images/second) as a function of batch size for different DNN models and operations on single P100 GPU (left). Time (seconds) to complete 1 epoch of SG and
on a dataset with 1 M images using varying number of MPI processes.

## Comparison of Computational Cost and Storage

- Number of line search iterations and CG itera- •The sampled quasi-Newton methods have NO

| method | computational cost | storage |
| :---: | :---: | :---: |
| BFGS | $n d+d^{2}+\kappa_{s} n d$ | $d^{2}$ |
| LBFGS |  | 2 md |
| S-LBFGS | $n d+m n d+4 m d+\kappa_{\text {ss }}$ nd |  |
| SR1 | $n d+d^{2}+n d+\kappa_{t r} d^{2}$ | $d^{2}$ |
| LSR1 |  | 2 md |
| $\frac{\text { LSR1 }}{\mathrm{S}-\mathrm{LSR}}$ | $\begin{gathered} n d+n d+\kappa_{t r} \\ \overline{n d}+m n d+n \bar{d}+ \end{gathered}$ | 2 ma |

- The sampled quasi-N
storage requirements
- The per iteration cost of the sampled quasi Newton methods is COMPARABLE to - In $m \ll n, d$ regime, the computational cost of - In $m \ll n, d$ regime,
the methods is $\mathcal{O}(n d)$


## Numerical Results

Toy Classification Problem

- Two classes each with 50 data points - Trained three FCNNs - small, medium functions and 4 hidden layers


| network | structure | $d$ |
| :--- | :---: | :---: |
| mall | $2-2-2-2-2-2$ | 36 |
| medium | $2-4-8-8-4-2$ | 176 |
| 1arge | $2-10-20-20-10-2$ | 908 |



Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on toy classification problems. Networks: small (left); medium (middle); large (right).

MNIST


Performance of GD, ADAM, BFGS, LBFGS, SR1, LSR1, S-LSR1 and S-LBFGS on MNIST problems

## Future Work

- Extend our proposed methods to the stochastic setting (inexact gradients and/or Hessians)
- Extend and modify our methods to incorporate adaptive batch-sizes and memory
- Conduct a large scale numerical investigation of the proposed methods


## References

- Berahas, A. S. Jahani, M. \& Takác. M. (2019). Ouasi-Newton Methods for Deep Learning. OPT2019
- Jahani, M., Nazari, M., rusakov, S., Berahas, A. S., \& Takấc, M. (2019). Scaling Up Quasi-Newton Algorithms: Com

Berahas, A.S. . .

- Berahas, A. S. Jahani, M., \& T
ardiv preprint ardiv: 191.0999 ?
- Code: https://github. com/OptMLGroup/SQN

