Characterization of Tunable Active Grid Generated Turbulence in a Water **Tunnel Facility** Christopher Ruhl¹, Ashwin Vinod^{1,2}, and Arindam Banerjee¹

⊨ 30

Testing & Expertise for Marine Energy ¹Department of Mechanical Engineering & Mechanics, Lehigh University, Bethlehem PA 18015

*Financial support from NSF-CBET-Fluid **Dynamics Program - Award #1706358** March 14, 2021 Bethlehem, PA

INTRODUCTION, PURPOSE, AND OBJECTIVE

- Active grid turbulence generating devices have to fine-tune turbulent flow used been environments in wind tunnel experiments. Active grids have seldom been used in water tunnels.
- Our laboratory has developed an active grid turbulence generator in a water tunnel with the goal of tailoring inflow turbulence to mimic flow **conditions** at high energy tidal test sites.

² Senior Research Engineer at Air Products, Allentown, PA 18015 (Current Affiliation)

DEPLOYMENT OF TIDAL STREAM TURBINE¹

<u>Purpose</u>: Recreating turbulent flow conditions of tidal flows provides an opportunity for tidal energy industry associates and academics to test energy conversion devices in a low-risk, low-cost environment, compared to full-scale field endeavors.

EXPERIMENTAL RESULTS

TURBULENCE STATISTICS MEASURED

TURBULENCE STATISTIC	FORMULA	where:
Turbulence Intensity, <i>Ti</i>	$Ti = \frac{u'_{rms}}{u} * 100$	<i>U</i> - time-averaged streamwise vel.
	U $C^T P(dt)$	v' – streamwise vel. fluctuation
Integral Length Scale, ILS	$ILS = U \int_0^\infty \frac{R(ut)}{R(0)} dt$	v' – spanwise vel. fluctuation
Taylor Reynold's Number, <i>Re_λ</i>	$Re_{\lambda} = \frac{u'\lambda}{m}$	ν – kinematic viscosity
Anisotropic Ratio, <i>I_{xy}</i>	u'_{rms}	<i>R(dt)</i> – autocovariance function
	$I_{xy} = \frac{rms}{v'_{rms}}$	λ – Taylor microscale

Objective: Provide a detailed characterization of the turbulent flow tuned by an active grid turbulence generator in a water tunnel.

ACTIVE GRID TURBULENCE GENERATOR

ACTIVE GRID DESIGN AND OPERATING PARAMETERS

5-SHAFT ACTIVE GRID CONFIGURATION

ACTIVE GRID OPERATING IN WATER TUNNEL

<u>Additional Nomenclature</u>: *Re_M* – Mesh Reynolds Number, *Ro* – Rossby Number

EFFECT OF WINGLET GEOMETRY

- \checkmark 60 diamond shaped rotating winglets + 24 fixed half winglets. ✓ Inner cross-section of 24" X 24"
- ✓ Mesh size, *M*, of 4"

configuration.

✓ Each shaft controlled by a dedicated stepper motor

> Lehigh Active Grid Turbulence generator has been developed

✓ Three operating protocols for control: Synchronous (SN), Single Random (SR) and Double Random (DR)

✓ Has up to 10 rotating winglet shafts – 5 Horizontal + 5 Vertical – Bi-planar

> Diagnostics: An Acoustic Doppler Velocimeter (ADV) was used to characterize the turbulence parameters in the water tunnel facility.

GRID PARAMETERS VARIED	
Operating Protocol	Synchronous, Single Random, Double Random
Winglet Geometry	Large, Small, Hollow
Freestream Velocity, U (m/s)	0.10, 0.20, 0.40, 0.60, 0.83
Angular Velocity, Ω (Hz)	0.10, 0.25, 1.00, 3.00

S VARIED			
Synchronous, Single Random, Double Random			
Large, Small, Hollow	Large Small Hollow		
0.10, 0.20, 0.40, 0.60, 0.83	WINGLET GEOMETRY. NOTE THE		
0.10, 0.25, 1.00, 3.00	SMALL WINGLET HALF THE SURFACE AREA OF THE LARGE WINGLET		
ACTIVE GRID TE	STING		
EXPERIMENTAL S	ETUP		
	The active grid was set in a 5-shaft		

TURBULENCE GENERATOR

SCHEMATIC OF THE EXPERIMENTAL SETUP

30 winglet) configuration

> Grid parameters were varied one at a time, while holding all other parameters constant, isolating the effect of the variable at hand

> Velocity measurements were recorded in the center of the tunnel at 5 downstream locations: X/M = 2.5, 5.0, 10.0, 15.0, 17.5

CONCLUSIONS

✓ The three most influential active grid parameters effecting produced turbulence are the Rossby Number, the Mesh Reynolds Number, and the winglet blockage.

 \checkmark Ti values remained constant as the integral length scales increase with increasing Ro; this indicates for a selected Ti value, one could alter Ω to tailor the large length scales of the flow.

 \checkmark Re_M significantly influences Ti in active grid produced turbulence in water.

¹Image courtesy of Verdant Power, Inc.