

Fractured

Boundary

Clinical Application of Virtual Mechanical Testing Measures Slow Fracture Healing in Patients with Comorbidities

Peter Schwarzenberg¹, Andrea McCarthy², James A. Harty², Hannah L. Dailey¹

¹Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA ²Department of Orthopaedic Surgery, Cork University Hospital, Cork, Ireland

The simulated torsion

test measures the

of each tibia:

relative to intact bone:

 VTR_{FX}

More Info

Discussion & Conclusions

- Virtual mechanical testing detected poor structural bone healing (23% lower VTR compared to normal) in patients with comorbidities with a large effect size even at small N.
- Previous clinical studies have required very large sample sizes (100s or 1000s of patients) to show significant contributions of risk factors to nonunion or delayed healing.
- As an assessment tool, virtual mechanical testing may enable clinical study design with much lower sample size requirements to study the effects of interventions and risk factors.

Corresponding Author Contact:

Peter Schwarzenberg Mechanical Engineering & Mechanics Lehigh University Peter@lehigh.edu

For additional information on the methods for virtual mechanical testing as an assessment of fracture healing, refer to:

Schwarzenberg P. et al., "Virtual structural analysis of tibial fracture healing from low-dose clinical CT scans," J Biomech, 83

Continuing research funding provided by an NSF CAREER Award CMMI-1943287

@DaileyOrthoLab

Conflict of Interest Statement:

All co-authors' disclosures are

listed on the ORS website.

