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SO4 Anchors at Surface Hydroxyls, NiO Anchors Adjacent to Hydroxyls 

• Olefins are typically produced from cracking crude oil 

• The growing abundance of natural gas has shifted feedstocks to 

lighter hydrocarbons, contributing to a shortage of n-butene 

• This has stimulated interest in dimerization of shale gas derived 

ethylene to produce n-butene 

• In industry, ethylene dimerization is carried out with homogeneous 

catalysts → problems with product separation, acid gas emissions, 

& catalyst recycling → leading to interest in developing 

heterogeneous catalysts

• High activity and selectivity to 2-butane reported for NiSO4/ZrOH

→ solid acid catalyst, mild reaction conditions (20 ℃) 

• Objectives: Determine the nature of Ni-SO4 interactions and the 

molecular structure/oxidation state of surface species that enhance 

the catalytic activity and selectivity

• SO4 anchors at hydroxyl sites, Ni anchors adjacent to hydroxyl sites 

• Ni2+ present during reaction 

• Both Ni and SO4 needed for enhanced ethylene dimerization activity 

• Preparation method influences the Bronsted to Lewis acid ratio and activity

• Lower Bronsted to Lewis acid ratio → enhanced activity & selectivity to n-

butene

• Higher Bronsted to Lewis acid ratio → higher production of propylene 

• Preparation methods may influence deactivation/reduction of Ni species

UV-vis during reaction 

(50 ⁰C) for 8SO4-5NiO/ZrOH

UV-vis during reaction 

(50 ⁰C) for 5NiO-8SO4/ZrOH

IR of Adsorbed NH3 (120 ⁰C)

Ethylene TPSR (5% C2=/Ar)

IR Spectra, Dehydrated (450 ⁰C), 10% O2/Ar

Method of Preparation Influences Activity & Selectivity 

Method of Preparation Influences Bronsted to Lewis Acid Site Ratio 

Order of Impregnation May Influence Oxidation State of Ni & Coking  

• Impregnating SO4 first → terminal hydroxyls diminished  

• Impregnating Ni first → tri-bridging Zr3-OH shifts to higher cm-1

• Ni anchors adjacent to hydroxyl sites or at surface defect sites  

• S=O vibration shifts to lower cm-1 for Ni containing catalysts → 

interactions between SO4 & Ni species may weaken the S=O 

bond 

• Both Ni and SO4 are needed for enhanced ethylene dimerization

• Impregnating NiO first → increased activity, lower propylene production  

• 1429 cm-1 → Bronsted acid 

• 1616 cm-1 → Lewis acid 

• Incorporation of Ni changes Bronsted to Lewis acid ratio

• Lower Bronsted to Lewis acid ratio → higher activity

• Higher Bronsted to Lewis acid ratio → increased production of propylene 

• Bronsted acid sites may be cracking butene 

• Peaks ~435 and ~539 nm → Ni2+O6 coordination

• Intensity of Ni2+ peaks decrease with reaction time → coking or Ni2+ reduction   

• Peak at 303 nm appears for 5NiO-8SO4/ZrOH → coking or allylic species 

• 5NiO-8SO4/ZrOH has lower activity → reduces/cokes faster than 8SO4-5NiO/ZrOH


