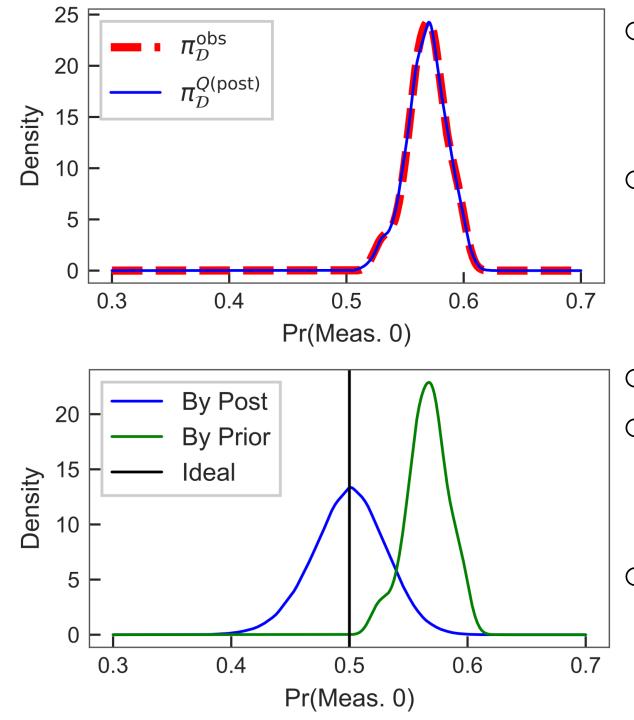

Characterizing and Filtering out Device Noise for Quantum Optimization Algorithms

Optimization in Quantum Computing DARPA Project Number: W911NF2010022

Muqing Zheng and Xiu Yang Industrial and Systems Engineering, Lehigh University Tamás Terlaky (PI) muz219@lehigh.edu


Research Objective:

Error propagation and filtering models for optimization algorithms.

Pr(Meas. 0) after 200 Entangled 3-Oubit State 2-Oubit Grover's **Correct Solutions Prob**

Source or Method	NOT Gates	Tomography Fidelity	Search Solution Prob.	of 4-Qubit QAOA
Ideal/Simulator	1	1	1	0.8930
Raw Data	0.6377	0.6974	0.6727	0.5784
Qiskit	N/A	0.8863	0.7097	0.5968
QDT	N/A	N/A	0.7107	0.6400
Consistent Bayesian	1.0000	0.9443	0.9128	0.6975

We use the *consistent Bayesian method* [1] to capture the **fluctuations** of Ο quantum hardware error parameters, such as gate error rates and readout error rates.

Inference for gate errors uses the following error propagation model. Ο

$$\tilde{p}(x) = \sum_{s \in \{0,1\}^n} \left[(1-\epsilon)^{|s|} \right]^m \hat{p}(s)(-1)^{s.x}$$

Law of total probability is considered to predict readout errors. Ο

Posterior distributions of error parameters can perfectly simulate the noise Ο in data (figure in the upper left) and denoise the training data (figure in the lower left).

Our approach has better performance than two existing methods in several Ο experiments conducted on IBM's quantum computer (table above and more in [2]).

Looking Forward

Develop a correlated readout error model using the polynomial number of parameters.

Expand gate error model to a more complicated situation. \bullet

Build up a description of hardware errors from an integrated quantum circuit perspective.

[1] T. Butler, J. Jakeman, and T. Wildey. Combining push-forward measures and bayes' rule to construct consistent solutions to stochastic inverse problems. SIAM Journal on Scientific Computing, 40(2):A984–A1011, January 2018. DOI: 10.1137/16m1087229. [2] Zheng, M., Li, A., Terlaky, T., & Yang, X. (2020). A bayesian approach for characterizing and mitigating gate and measurement errors. arXiv preprint arXiv:2010.09188.