Feb. 8: "From Physics-Informed Machine Learning to Physics-Informed Machine Intelligence: Quo Vadimus?"
Date: Wednesday, February 8, 2023
 
Time: 9:30-10:30AM
 
Location: Health Science Technology Building (HST), Forum Room 101
 
This event features George Karniadakis, as the Schiesser Distinguished Lecturer, who will talk about "From Physics-Informed Machine Learning to Physics-Informed Machine Intelligence: Quo Vadimus?", as part of the Lehigh University Chemical and Biomolecular Engineering's Spring 2023 Colloquium Seminar Series.
 
The lecture series is supported by a fund established by Dolores T. Schiesser for an annual lecture in interdisciplinary scientific computation. Dr. William E. Schiesser is Emeritus McCann Professor of Computational Biomedical Engineering and Chemical and Biomolecular Engineering, and Professor of Mathematics at Lehigh University. His research is directed toward numerical methods and associated software for ordinary, differential-algebraic and partial differential equations (ODE/DAE/PDEs). He is the author, coauthor or coeditor of 32 books, and his ODE/DAE/PDE computer routines have been accessed by some 5,000 colleges and universities, corporations and government agencies. 
 

Abstract

We will review physics-informed neural networks (NNs) and summarize available extensions for applications in computational science and engineering. We will also introduce new NNs that learn functionals and nonlinear operators from functions and corresponding responses for system identification. The universal approximation theorem of operators is suggestive of the potential of NNs in learning from scattered data any continuous operator or complex system. We first generalize the theorem to deep neural networks, and subsequently we apply it to design a new composite NN with small generalization error, the deep operator network (DeepONet), consisting of a NN for encoding the discrete input function space (branch net) and another NN for encoding the domain of the output functions (trunk net). We demonstrate that DeepONet can learn various explicit operators, e.g., integrals, Laplace transforms and fractional Laplacians, as well as implicit operators that represent deterministic and stochastic differential equations. More generally, DeepOnet can learn multiscale operators spanning across many scales and trained by diverse sources of data simultaneously. Finally, we will present first results on the next generation of these architectures to biologically plausible designs based on spiking neural networks and Hebbian learning that are more efficient and closer to human intelligence.   
 

About the Speaker

George Karniadakis is from Crete. He is a member of the National Academy of Engineering and a Vannevar Bush Faculty Fellow. He received his S.M. and Ph.D. from Massachusetts Institute of Technology (1984/87). He was appointed Lecturer in the Department of Mechanical Engineering at MIT and subsequently he joined the Center for Turbulence Research at Stanford / Nasa Ames. He joined Princeton University as Assistant Professor in the Department of Mechanical and Aerospace Engineering and as Associate Faculty in the Program of Applied and Computational Mathematics. He was a Visiting Professor at Caltech in 1993 in the Aeronautics Department and joined Brown University as Associate Professor of Applied Mathematics in the Center for Fluid Mechanics in 1994. After becoming a full professor in 1996, he continued to be a Visiting Professor and Senior Lecturer of Ocean/Mechanical Engineering at MIT. He is an AAAS Fellow (2018-), Fellow of the Society for Industrial and Applied Mathematics (SIAM, 2010-), Fellow of the American Physical Society (APS, 2004-), Fellow of the American Society of Mechanical Engineers (ASME, 2003-) and Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA, 2006-). He received the SIAM/ACM Prize on Computational Science & Engineering (2021), the Alexander von Humboldt award in 2017, the SIAM Ralf E Kleinman award (2015), the J. Tinsley Oden Medal (2013), and the CFD award (2007) by the US Association in Computational Mechanics. His h-index is 126 and he has been cited roughly 75,000 times.

George Em Karniadakis
 
The Charles Pitts Robinson and John Palmer Barstow Professor of Applied Mathematics and Engineering, Brown University

Dr. William E. Schiesser