Making cities smarter

The mention of smart cities may bring to mind visions of a sparkling future metropolis, churning smoothly and silently: gleaming monorails gliding by with nary a whisper, walkways whisking pedestrians to their destinations, wireless and instant access to information on demand, and lights brightening and dimming on cue as you enter or leave a room.

Romancing the Scutoid

As an embryo develops, tissues bend into complex three-dimensional shapes that lead to organs. Epithelial cells are the building blocks of this process, forming, for example, the outer layer of skin. They also line the blood vessels and organs of all animals.

These cells pack together tightly. To accommodate the curving that occurs during embryonic development, it has been assumed that epithelial cells adopt either columnar or bottle-like shapes.

However, a group of scientists dug deeper into this phenomenon and discovered a new geometric shape in the process.

Powering the Future: Wenxin Liu Awarded Grant from Office of Naval Research

Traditional, centralized power grids—where power is generated, transmitted and then distributed to users—is fast becoming a thing of the past. Such systems are inefficient and vulnerable to attack. In addition, renewable energy sources, such as wind and solar, have led to more compact generators. For all these reasons, the future of power is power electronics-based microgrids.

A microgrid is exactly what it sounds like: a small grid. It consists of multiple distributed generators and loads and can work in both grid-connected- or autonomous- modes.

Pages